

EKLIPSE REPORT

FEB 2022

WHAT IS THE STATE OF KNOWLEDGE REGARDING THE POTENTIAL OF MACROALGAE CULTURE IN PROVIDING CLIMATE-RELATED AND OTHER ECOSYSTEM SERVICES?

Requested by DG-Mare

eklipse

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

REPORT

"What is the state of knowledge regarding the potential of macroalgae culture in providing climate-related and other ecosystem services?"

February 2022

EKLIPSE EXPERT WORKING GROUP MACROALGAE

Members of the Expert Working Group:

Ricardo Bermejo - University of Cádiz, Department of Biology, Spain

Alejandro Buschmann - University of Los Lagos, Centro i-mar, Chile

Elisa Capuzzo - Centre for Environment, Fisheries and Aquaculture Science (Cefas), UK

Elizabeth Cottier-Cook - Scottish Association for Marine Science, UK

Anna Fricke - Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Germany

Ignacio Hernández - University of Cadiz, Department of Biology, Spain

Laurie Carol Hofmann - Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Germany

Rui Pereira - A4F, Algae for Future, Portugal

Sander van den Burg - Wageningen Research, Netherlands

Members of the Methods Expert Group:

Miriam Grace - University of East Anglia, University of Cambridge, UK

Nibedita Mukherjee - Department for Environment, Food & Rural Affairs, UK

Laura Wendling - VTT Technical Research Centre of Finland, Finland

Version	prepared by	Data	Status
1.0	EWG	10/02/2022	For public review

INDEX

I.	GIO	ssar	У	I
2.	Вас	kgr	ound and objectives	1
3.			lological framework	1
4. 1	Del _l .1.		thodology	2 2
4				
	4.1.1		dapting the Delphi method for this assignment	3
4	.2.	Res	sults	3
	4.2.	1.	Characterization of respondents	3
4	.3.	Mai	n Ecosystems Services identified by the Delphi respondents	6
	4.3.	1.	Constraints identified by the Delphi respondents	9
	4.3.	2.	Negative impacts according to Delphi respondents	9
	4.3.	3.	Main knowledge gaps according to Delphi respondents	11
5.	Qui	ck S	coping Review	14
5	.1.	Me	thodology	14
	5.1.1	. S	tep 1 – Identification	15
	5.1.2	2.	Step 2 - Screening	16
	5.1.3	3.	Phase II - Classification	17
5	.2.	Qui	ck Scoping Review Data Synthesis	18
	5.2.	1.	Seaweed farms	20
	5.2.	2.	Ecosystem Services	22
	Ec	cosys	stem Service Classification	22
	Ec	cosys	stem Services and the United Nations Sustainability Goals	25
	5.2.	3.	Constraints	27
	5.2.	4.	Negative Impacts/Risks	29
	5.2.	5.	Knowledge Gaps	30
6.	Disc	cuss	ion	33
6	.1.	Ref	lection on the methodology	33
6	.2.	Qua	ality of the compiled data set	34
6	.3.	Ecc	psystem services provided by seaweed cultivation	35
	.4. y ma		owledge Gaps inhibiting scale-up and delivery of ecosystem se algae cultivation	rvices 35
6	.5.	Mai	n constraints limiting scale-up of macroalgae cultivation	36

6	5.6.	Potential	negative	impacts	or	trade-offs	of	scaling-up	macroal	lgal
C	ultiv	ation								37
7.	Cor	nclusions								38
8.	Bib	liography								40
	Ref	erences fo	or the Meth	nodologic	al pa	art				40
	Ref	erences f	orming the	base of t	he	QSR				40
An	nex 1	: Work dod	cument of	the Delph	i Pro	cess				72
	Que	estions ser	nt to the ex	perts for	the	first round	of th	ne Delphi Pro	ocess	72
	Que	estions ser	nt to the ex	xperts for	the	second rou	nd o	f the Delphi	Process	.74
An	nex	2. Overvie	w of diffe	rent cate	gori	ies used fo	r cla	ssification	of differ	ent
art	icles	selected i	n the QSR							78
An	nex	3. Overvie	w of differ	ent type	s of	constraints	ide	ntified in t	ne analys	sed
lite	ratui	re.								82
An	nex	4 Overv	iew of dif	ferent ty	pes	of Knowled	dge	Gaps ident	ified in t	the
ana	alyse	d literature)							84

1. GLOSSARY

Term	Definition	Key References
Ecosystem services	In CICES ecosystem services are defined as the contributions that ecosystems make to human well-being, and distinct from the goods and benefits that people subsequently derive from them	www.cices.eu; Haines-Young, R. & M.B. Potschin, 2018
Land-based cultivation	cultivation of macroalgae on land	
Transitional	cultivation of macroalgae in estuarine or brackish waters	
Near-shore, sheltered	cultivation of macroalgae in marine waters <50m water depth & <3 nautical miles distance to shore	Bak et al. (2020)
Near-shore, exposed	cultivation of macroalgae in marine waters >50 meters depth & <3 nautical miles from shore	Bak et al. (2020)
Offshore	>3 nautical miles from shore	Bak et al. (2020)
Green Deal		https://ec.europa.eu/info/stra tegy/priorities-2019- 2024/european-green- deal_en
European Blue Bioeconomy		https://ec.europa.eu/info/rese arch-and- innovation/research- area/environment/bioeconom y/blue-bioeconomy_en
Blue-Growth		https://s3platform.jrc.ec.euro pa.eu/blue-growth

Trade-offs	A situation in which you balance two opposing situations or qualities	https://dictionary.cambridge. org/pt/dicionario/ingles/trade -off
Blue Carbon		https://www.iucn.org/resource s/issues-briefs/blue-carboN
EMFF	European Maritime and Fisheries Fund	https://ec.europa.eu/oceans- and- fisheries/funding/european- maritime-and-fisheries-fund- emff_en

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

2. BACKGROUND AND OBJECTIVES

There is growing awareness of and interest in the potential of macroalgae present in coastal ecosystems, including cultivation, to provide a wide range of solutions and mitigations to anthropogenically-induced problems. There is strong evidence that macroalgae aquaculture can potentially mitigate climate change (e.g. via uptake of carbon dioxide), protect coastlines, reduce local biodiversity loss, improve water quality, among other ecosystem services. Nevertheless, there are still many constraints and knowledge gaps that need to be overcome, as well as potential negative impacts or scale-dependent effects (e.g. farm size or type of aquaculture) that need to be considered before macroalgae cultivation in Europe can grow successfully and sustainably.

This Eklipse request for knowledge synthesis (CfR.5/2020/1) aims to explore and map existing knowledge and identify knowledge gaps and trade-offs, to inform future development of macroalgae culture strategies and policies. Furthermore, more knowledge is needed to evaluate impacts in terms of water, energy, land and sea use, changes in sedimentation rates and structure of local ecological communities, potential pollution and risk of releasing non-native invasive species into the environment. This additional knowledge can contribute to the development, promotion and implementation of adequate and timely policy frameworks.

The requester, DG Maritime Affairs & Fisheries, Unit for Maritime Innovation, Marine Knowledge (DG MARE), is contemplating the development of an EU Algae Strategy. This strategy will take into consideration the multiple areas where macroalgae cultivation can contribute to the Green Deal as well as the importance of the overall algae sector for the development of a sustainable European Blue Bio-economy. The successful development of this strategy requires that the knowledge gaps, constraints, and potential negative impacts related to macroalgae cultivation are identified in order to advise, through DG MARE, the development of relevant research activities under the next EMFF and Horizon Europe programmes. Therefore, the requester posed the following questions:

- What is the state of knowledge regarding the potential of macroalgae culture in providing climate-related and other ecosystem services?
- Are there specific knowledge gaps to be addressed before harvesting this potential?

To answer these primary questions, the Expert Working Group (EWG) on Macroalgae was established. The EWG has been meeting remotely weekly since February 22nd, 2021. The EWG received an introduction to the Eklipse call, a presentation on the requests and needs of the requester and the accompanying Document of Work, and a summary of the available methods by the Methods Expert Group (MEG). The EWG then selected four co-chairs to lead the subsequent meetings. After several discussions with the MEG, the EWG agreed on the methods to be used and was organised into two groups, with each group focusing on one of the two chosen methods. The details on the choice of methodology and expected outcomes are described below.

3. METHODOLOGICAL FRAMEWORK

44

45

46

47

48

49

50

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

To achieve the objectives formulated above, a combination of the following two methods was followed: A Multiple Expert Consultation with Delphi Process and a Quick Scoping Review (QSR). These methods were conducted in parallel, rather than sequentially. A first round of questions was sent to selected experts as part of the Delphi Process, and then the EWG proceeded with the QSR. The use of the two methods helped to provide a more comprehensive answer to the request than the use of a single method, as shown in **Table 1**.

Table 1: Relationships between the request **objectives** and proposed **knowledge synthesis methods**.

Questions	Quick Scoping Review	Delphi Process
What is the state of knowledge?	 Provides synthesis of relevant literature Generates knowledge base to hold against results from Delphi 	 Identify and prioritise ecosystem services considered relevant Identify constraints for up-scaling Identify trade-offs and negative impacts
Are there specific knowledge gaps?	Evident if no literature is found in targeted areas of interests	 Collects expert opinions on knowledge gaps Formulate pathways to fill these gaps

- The QSR focused on peer-reviewed literature, and the Delphi process captured the most recent and up-to-date views of experts from key sectors, including science, business and NGOs. Therefore, while QSR provides a robust view on published literature and evidence, Delphi covers views of not only scientists, but also other societal actors with practical and experience-based knowledge on the key issues in macroalgae cultivation.
- To analyse the outcome of both approaches we adopted the PESTEL approach (Basu 2004), classifying the papers according to external key factors (Environmental, Technical, Economic, Political, Social, Legal). Ecosystem services (ES) were categorised based on the CICES 5.1 classification (Haines-Young and Potschin-Young 2018).

4. DELPHI

60

61

62

63

64 65

66

67

68

4.1. METHODOLOGY

The Delphi process is an iterative technique for collecting information using expert consultation in a structured manner in order to produce forecasts and evaluate complex problems. This method was originally described by Dalkey and Helmer (1963) and has since then been adapted to the fields of ecology and biology (Mukherjee et al. 2015) and many others. Because of the iterative and controlled nature of the process, which remains anonymous, it is a rigorous approach to eliciting expert knowledge. The main benefits of using the Delphi Process are that it is relatively rapid and low cost, rigorous, repeatable

70

71

72

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

and transparent. The drawbacks of the method are that it can be time consuming for the experts and there can be some bias from experts with strong opinions, if this is not managed carefully.

4.1.1. ADAPTING THE DELPHI METHOD FOR THIS ASSIGNMENT

73 The Delphi process was adapted to address the questions raised by the EWG on 74 macroalgae cultivation. We identified at least 130 experts from 40 countries, 15 of which 75 were EU countries, to participate in three rounds of questioning. The geographic 76 distribution of experts was global but considering that the requester is interested in 77 knowledge gaps surrounding macroalgae cultivation in Europe, the EWG agreed on 78 including approximately 70% of the experts from Europe and 30% of the experts from 79 elsewhere throughout the world. The experts invited were a mix of representatives from 80 academia, industry, and organisations with particular interest in the marine environment, 81 such as private environmental organisations or other stakeholders (tourism, fisheries, etc.). 82 It was decided to aim for an approximate ratio of 3:3:2:2 representation from academia, 83 industry, NGOs, and other marine organisations, respectively.

- The work document prepared for the Delphi Process is presented in **Annex 1**. In addition to a general introduction and the actual questions for round 1, it also includes a set of background questions. These sections were created to facilitate the interpretation of the results and, if needed, to allow the implementation of selection criteria, which could be considered necessary to comply with the agreed balance between regions and between activity sectors.
- The first round of the Delphi process adopted open questions, very much aligned with the questions provided by the Document of Work for the Macroalgae culture request (February 2021).
- The first round of questions used to assess expert opinions using the Delphi process was sent out to 104 experts from academia, industry, NGOs and other marine organisations. We received responses from 22 participants. Their responses were analysed and
- 96 consolidated into a revised questionnaire for the second round of expert opinions.
- 97 For the second round of the Delphi process, we provided a list of Ecosystem Services,
- 98 knowledge gaps, and negative impacts or trade-offs identified in the first round and asked
- 99 the respondents to rank them in order of importance or severity (see Annex 1 for specific
- 100 questions used in the second round). We received responses from six experts in the
- 101 second round. The results obtained from the Delphi process are presented below.
- 102 Even though the initial methodology planned for three rounds in the Delphi process, after
- the first round, the EWG experts decided, based on the low response (6% after 2 rounds),
- 104 that two rounds were enough. This decision was also validated by the Eklipse methods
- 105 experts, considering the results from the first round, the planned questions for the second
- 106 round and the time frame available.

107 4.2. RESULTS

108

4.2.1. CHARACTERIZATION OF RESPONDENTS

111 112

113

114

115

116

117

118

119

120 121

122

123

124

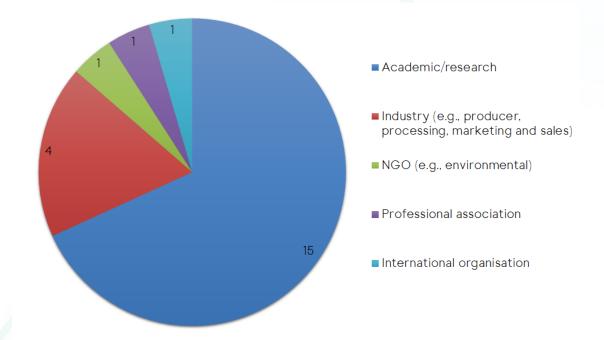
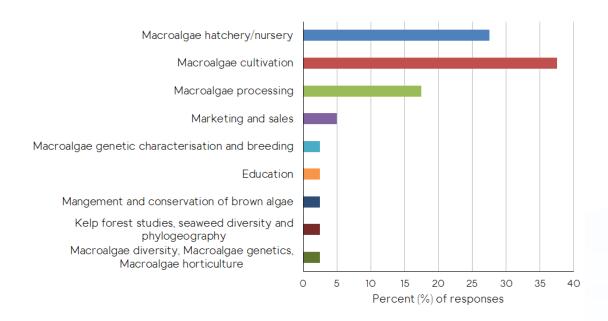
125

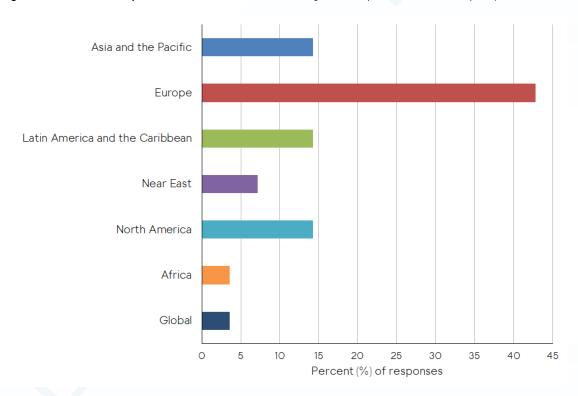
126

127

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

The majority of responses to the first questionnaire were from representatives of academia or research (Fig. 1). Only four respondents were representatives from industry, and only single responses were obtained from NGOs, professional associations or international organisations. Among experts from academia and industry, the most dominant focus areas fell into the categories of macroalgae cultivation, macroalgae hatchery/nursery, and macroalgae processing (38%, 28%, and 18%, respectively; Fig. 2). Combined, these focus areas accounted for 84% of the responses. Only 5% of experts focused on marketing and sales, while focus areas such as macroalgae genetic characterization and breeding, education, management and conservation of brown algae, kelp forest studies, seaweed diversity/phylogeography, macroalgae diversity, macroalgae genetics, macroalgae horticulture, were represented by only 2.5% of participants. Over 40% of experts in the first round of the Delphi process were from Europe, but a global representation was present among the participants (Fig. 3). Nearly half of the experts had expertise in near-shore seaweed cultivation (either sheltered or exposed), while 21% had expertise in land-based cultivation and 15% had experience in offshore cultivation (Fig. 4). Very few experts had experience in cultivation in ponds or in transitional waters.


Fig. 1 Distribution of experts in the different sectors related to seaweed cultivation that responded to the first round of the Delphi questionnaire

128 129

Fig. 2 Focus areas of experts from academia and industry that responded to the Delphi questionnaire

130

131

Fig. 3 Regional distribution of experts that participated in the Delphi questionnaire

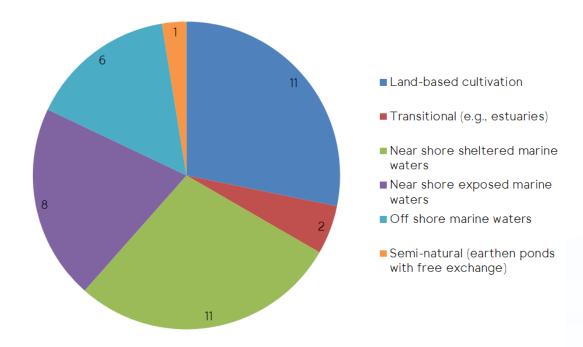
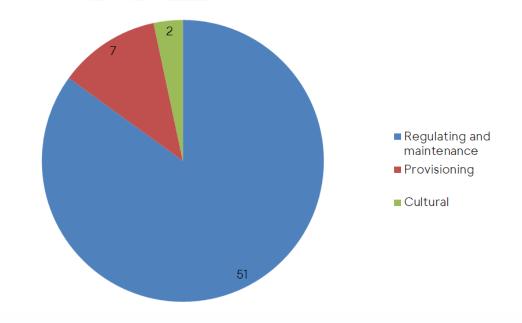



Fig. 4 Distribution of work experience in terms of types of seaweed cultivation among experts that participated in the Delphi questionnaire

4.3. MAIN ECOSYSTEMS SERVICES IDENTIFIED BY THE DELPHI RESPONDENTS

According to the responses of the Delphi questionnaire, 85 % of Ecosystem Services (ES) identified by the experts for seaweed cultivation fell within the "Regulation and Maintenance" category, based on the CICES 5.1 Classification (Fig.5). Only 12% of ES identified were classified in the "Provisioning" category, and 3% were classified as "Cultural".

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

Fig. 5 Overview of relevant ecosystem services (general categories based on the CICES 5.1 classification) according to the expert responses to the Delphi questionnaire

A further breakdown of the responses (**Fig.6**), still using CICES 5.1 classification, shows that the **most referred ES** provided by seaweed cultivation belong to the following classes: "Regulation of chemical composition of atmosphere and oceans (code 2.2.6.1)" and "Filtration/ sequestration/ storage/ accumulation by microorganisms, algae, plants, and animals (code 2.1.1.2)" both with 17%, followed by "Maintaining nursery populations and habitats, including gene pool protection (code 2.2.2.3) with 13%.

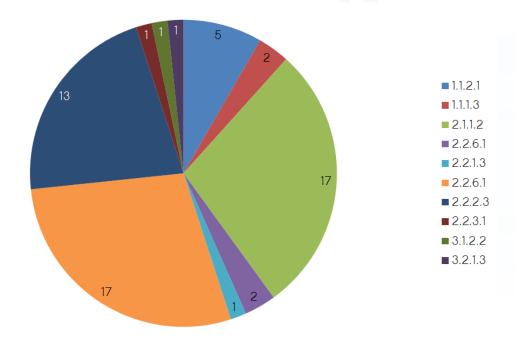


Fig.6 Overview of specific ecosystem services provided by seaweed cultivation according to the expert responses to the Delphi questionnaire. Numeric codes correspond to CICES 5.1 Classification , as follows, Section (Class): 1.1.2.1 - Provisioning (Fibres and other materials from cultivated plants, fungi, algae and bacteria for direct use or processing (excluding genetic materials); 1.1.1.3 - Provisioning (Cultivated plants (including fungi, algae) grown as a source of energy); 2.1.1.2 - Regulating & Maintenance (Filtration/sequestration/storage/accumulation by microorganisms, algae, plants, and animals); 2.2.1.3 - Regulating & Maintenance (Hydrological cycle and water flow regulation (Including flood control, and coastal protection); 2.2.6.1 - Regulating & Maintenance (Regulation of chemical composition of atmosphere and oceans); 2.2.2.3 - Regulating & Maintenance (Maintaining nursery populations and habitats (Including gene pool protection)); 2.2.3.1 -Regulating & Maintenance (Pest control (including invasive species)); 3.1.2.2 - Cultural (Characteristics of living systems that enable education and training); 3.2.1.3 - Cultural (Elements of living systems used for entertainment or representation).

During the second round of the Delphi process, in reply to Question 1, it was then asked to rank the top 5 ecosystem services: "From the list of **Ecosystem Goods and Services (ES)** presented below, please select the 5 that you feel are most important and rank them from 1 to 5, where 1 is the most important and 5 is the least important of the options selected".

The average ranking is presented below (**Table 2**), whereas a higher score indicates higher importance. These results confirm only partially those of the first round. In fact, while in the first round the most referred ES were within the "Regulating & Maintenance" (85%) category, in the second round the most important ES related to "Provisioning" (in 2 of the top 3). ES such as recreation and tourism, education and training, and coastal protection were ranked as the least important by the experts (**Table 2**).

Table 2: Average scores of the ES, for Question 1, ranked from higher to lower importance, according to the respondents selected option. Individual ranking was set from 1 to 5, whereas higher score indicates higher importance.

Ecosystem service	Average score
Macroalgae grown for food (including hydrocolloids)	3.8
Regulation of water quality (including eutrophication, bio- mitigation, bioremediation)	3.2
Macroalgae grown for feed	2.7
Maintaining nursery populations and habitats (including gene pool protection)	2.0
Carbon sequestration/storage/accumulation by macroalgae	1.3
Climate regulation (CO2, carbon cycle, DMS, other)	1.3
Macroalgae grown as a source of energy	O.5
Pest and disease control	0.2
Coastal protection (erosion, wave reduction, flood control)	0.0
Characteristics of living systems that enable education and training	0.0
Elements of living systems used for recreation and tourism	0.0

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

4.3.1. CONSTRAINTS IDENTIFIED BY THE DELPHI RESPONDENTS

Participants also responded to the question regarding the main constraints that need to be resolved before upscale significantly macroalgae cultures. The responses from the first round were grouped according to the PESTEL analysis (**Fig. 7**). Three categories equally stand out: legal (e.g. safety regulations), economic (e.g. lack of demand for seaweeds in many countries) and technological (e.g. production in large scales) and represented almost 70% of the total. According to the responses received, the less important constraints were related to social and environmental issues, representing 9.6% and 7.7%, respectively, of the total identified. Political constraints (e.g. political development and permitting) were identified in eight responses and represented 15,4% of the total.

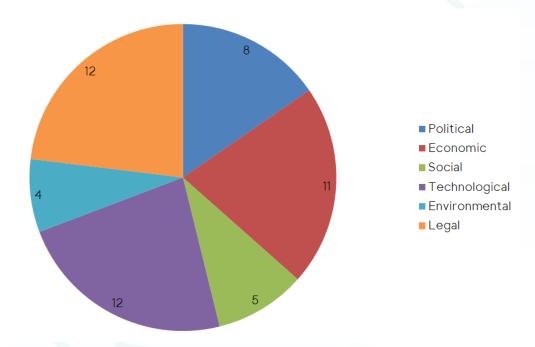


Fig.7 Distribution of constraints identified during the first round of the Delphi process among the PESTEL categories.

4.3.2. NEGATIVE IMPACTS ACCORDING TO DELPHI RESPONDENTS

When asked what negative impacts or trade-offs upscaling macro-algae cultivation may lead to, particularly when it comes to ES, experts provided diverse responses, which are summarised below in **Table 3**.

Table 3 Clustering of examples of potential negative impacts or trade-offs of seaweed cultivation provided by experts that participated in the first round of the Delphi questionnaire.

Negative impacts provided by experts

Excessive nutrients removal (e.g. compromising other ecosystem functioning, impacting the food web)

Carbon capture (e.g. excessive removal and impact on final destination, such as sinking)

Destruction of habitats (e. g. shading; clearing up the seafloor using anchor/stakes)

Decrease species diversity/biodiversity

Spreading diseases and pests

Impacts on tourism (e.g. plastics, casted biomass, visual impact, etc.)

Decrease water quality (e.g. pollution during farming operations, materials, debris, etc.)

In the second round of the Delphi process, the participants were asked to rank the negative impacts: "From the list of **negative impacts** or trade-offs that may result from upscaling of macroalgae cultivation (as identified in the previous round of questions) please select the five that you feel are most critical and rank them from 1 to 5, where 1 is likely to be the most severe and 5 is likely to be the least severe of the options selected".

The weighted scores associated with each impact show that 'Conflict with other users/uses' was the most important negative impact of macroalgae cultivation, identified by the experts, followed by 'Unknown environmental impacts' (**Table 4**). Physical damage (resulting from the farm structure) and reduction of water flow were ranked as the least important (**Table 4**).

208

209

210

198

199

200

201

202

203

204

205

206

207

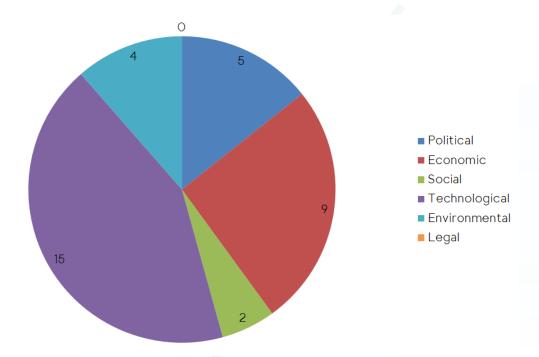
Table 4: Negative impacts, identified by the experts during the first round of the Delphi process and ranked during the second round

Potential negative impact or trade-off	Average score
Conflict with other users/uses (at land or sea)	3.17
Unknown environmental impacts (e.g., on deep sea, benthic and pelagic ecosystems)	2.50
Mismatch in supply and demand of biomass	2.00
Shifts in seaweed genetic diversity	2.00
Pollution (e.g., plastics)	1.50
Negative impacts on ecosystem biodiversity	0.83
Aesthetics	0.83

Over exploitation of the environment	0.83
Water flow reduction	0.67
Physical damage (e.g., damage to the sea floor resulting from the farming structures, anchors, stakes, etc.)	0.67

4.3.3. MAIN KNOWLEDGE GAPS ACCORDING TO DELPHI RESPONDENTS

In reply to the question: "What are the **knowledge gaps** on macroalgae cultivation (e.g., processing and marketing), that would need to be addressed in order to upscale it and enhance its delivery of ES?", the respondents to the questionnaire mentioned a number of topics, which the EWG grouped into categories listed in **Table 5**. It should be noted that the provided answers were often not formulated as a knowledge gap; instead, the experts mentioned one or more terms related to a knowledge. The EWG have refrained from reformulating the answers, to avoid incorrect interpretation. All knowledge gaps, or hints at knowledge gaps, were categorised using the PESTEL framework in **Table 5**. The results presented in **Fig. 8** show that the highest number of knowledge gaps identified by the experts fell within the 'Technological' category, followed by 'Economic'.


Table 5: Knowledge gaps identified during the first round of the Delphi process, with associated PESTEL category and count (number of experts that identified each specific knowledge gap).

Term related to a knowledge gap	PESTEL Category	Total counts
Biofouling (1), Density (1), Drying/stability/pre-processing (4), Consistent production quality (2), Strain improvement for quality and consistency (2, Farming technology (1), Year-round crop to enable uptake of nutrients and achieve a stable secondary ecosystem around fish farms (1), Mechanization (1), Land-based cultivation (1), Evaluate near-and offshore farm grounds (1),	Technological	15
Suitable price (1), Transparency market prices (1), Business case (2), Upscaling of farms to km² size (1), Production in large-scale (2), Moving offshore for more space (1), Detailed market information (1)	Economic	9
CO ₂ credits, Biodiversity credits (1), Change politics (1), Set standards for heavy metal maximum values (1), Mechanisms for valorisation of ecosystem services (1)	Political	4

Ecosystem carrying capacity (3), Insight into scale-effects (1),	Environmental	4
Training of young scientists (1), Direct links between farmers and processors (1)	Social	2

225

226

227

228

Fig.8 Knowledge gaps identified during the first round of the Delphi process grouped by PESTEL categories (as in Table 5). Note that there is no knowledge gap related to the legal category.

229

230

231

232

233

In the second round, the participants were asked to rank the knowledge gaps based on importance: "From the list of knowledge gaps presented below, please select the five that you feel are most important and rank them from 1 to 5, where 1 is the most important and 5 is the least important of the options selected".

The weighted scores of knowledge gaps (**Table 6**) suggest to confirm the importance attributed to the **Technological Knowledge Gaps**, such as "farming technologies", and "technologies for macroalgae processing", followed by **Market Data** (including subcategories belonging to the Economics, Technological and Social divisions of a PESTEL analysis). **Economic** and **Political** aspects are the following categories of knowledge gaps

with 'Training' as the least important.

241

239

and Environmental assumes less importance in the ranking according to the respondents,

Table 6: Knowledge gaps identified during the first round and ranked during the second round of the

243 Delphi process

Knowledge gaps category	Averag e Score	Sub-categories
Farming technologies	2.3	Strain improvement
		Ensure consistent production quality
		Develop mechanisation;
		Technologies for further cultivation approaches
Technologies for macroalgae processing	2.0	
Market data	1.67	Adequate value-chain connections
		Detailed market information
		Adequate price
Economic data	1.5	Appropriate business cases
		Information on valorisation of ES
Politics	0.8	NA
Data obtained from "real" macroalgae farming	0.8	Appropriate scale of production
		Appropriate spatial planning for farming sites
Environmental data	0.3	Nutrient uptake/bioremediation
		Biodiversity impact
		Occurrence/impact of nuisance species
Certification	0.3	CO₂ footprint
		Food safety
		Ecosystem provisioning
Training	0.0	NA

245	It is interesting to notice the lower importance attributed to knowledge Gaps concerning		
246	Environmental Data, when compared to Technological and Economic knowledge. Even		
247	though the question specifically asked for knowledge gaps that could help to upscale		
248	macroalgae production and enhance its ES deliveries, and that several ES directly related		
249	to "Regulation & Maintenance" and "Provisioning", many responses were related to		
250	knowledge gaps that can be considered in the Technological and Economic categories.		
251	In reply to the request to provide some possible means (actions and/or key players) to		
252	address critical knowledge gaps, the following suggestions were provided by the		
253	respondents:		
254	"Authorities that provide permits for farming, connecting them in the EU to		
255	harmonise the rules"		
256	"Enable large scale test sites by connecting the projects to independent		
257	institutions following the effects"		
258	"Include Lloyds to learn about the risks. De-risking in all aspects is essential for		
259	further upscaling"		
260	"Seaweed cultivation must enter the political agenda to create funds that will		
261	support farmers developing novel technologies and automation in production and		
262	processing. This will ensure consistent production quality."		
263	"The EU should be a key player in funding research and technology specifically in		
264	addressing these knowledge gaps, both through general and industry pointed		
265	financing actions, including more COST actions."		
266	"Totally dependent which country you live, no point providing this as state		
267	agencies, dept. of marine or Universities are responsible."		
268	Once again, in this case the EWG decided not to rephrase the respondents' answers, in		
269			
270			
271	issues, either through funding decisions, licensing aspects (namely country harmonisation)		
272	and planning.		

273 5. QUICK SCOPING REVIEW

5.1. METHODOLOGY

274

275

276

277

278

A Quick Scoping Review (QSR) is a systematic and objective study of evidence from scientific literature, which aims to provide an informed conclusion on the volume and characteristics of an evidence base and a synthesis of what that evidence indicates in relation to a question. In order to reduce the time and expense of production, this method

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

does not include a critical appraisal of the evidence. The lack of a critical appraisal limits the use of this methodology to directly inform a decision, but provides a general understanding of the evidence base, which is useful to inform general policy direction (Collins et al., 2015). In the present study, a quick scoping review was conducted (Collins et al. 2015) to identify peer-reviewed English language scientific journal articles, addressing ecosystem services provided by macroalgal cultivation. The scoping review was carried out to summarise the current state of the knowledge and identify potential constraints and knowledge gaps. For this purpose, documents were screened in three different steps (identification, screening, eligibility, Fig.9).

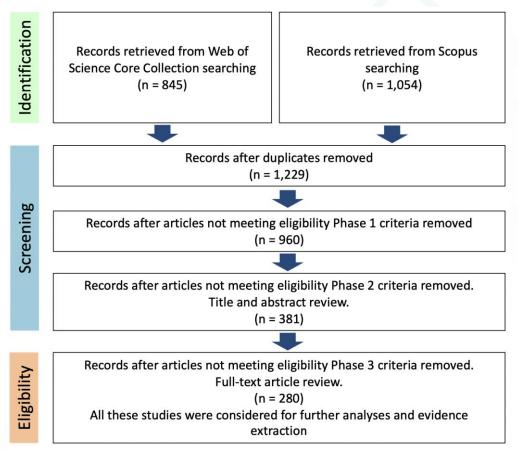


Fig.9 Diagram showing the different steps during the quick scoping review and the number of manuscripts that were finally considered eligible.

5.1.1. STEP 1 - IDENTIFICATION

In the first step, we conducted a structured search of the scientific literature. A preliminary exploration of the literature, based on 5 primary keywords (Macroalgae, Seaweed, Cultivation, Farming, Aquaculture) and 11 secondary keywords (climate change, invasive species, impacts, arsenic, bromine, ecosystem services, greenhouse, value chain, biosecurity, carbon, bioremediation) using the web search engine Google Scholar resulted in 442 papers. However, a further broader search was carried out, due to concerns of potentially missing important papers, as result of keyword restrictions and the general nature of ecosystem services. Consequently, new keywords were defined, based on six

combinations of the primary terms "macroalga" and "seaweed", and the secondary terms "cult*", "farm*" and "aquaculture", whereas quotation marks were used for combination and search to reduce the number of unrelated literature. The search was conducted in parallel in Scopus and Web of Science (WoS) database, on 16th June 2021. Data was compiled in Mendeley (reference management software) and duplicates were removed using the software, resulting in a total of 1229 entries (Table 7).

Table 7. Outcome of literature search of the six keywords in Scopus and Web of Science (WoS) database in June 2021. Amount of totals include data set after software and subsequent manual duplicate removal.

Keyword	Scopus	WoS	
Seaweed aquaculture	136	227	
Seaweed farm*	363	266	
Seaweed cult*	620	348	
Macroalgae* aquaculture	15	15	
Macroalgae* farm*	22	18	
Macroalgae* cult*	103	96	
Total duplicates (by software check)	1259	970	
Total	1054	845	= 1899 => <u>1229</u>

5.1.2. STEP 2 - SCREENING

The resulting entries were sorted in an Excel spreadsheet with macros, containing information on bibliography type, author, title, DOI, publication year and abstract. All articles were sorted and screened according to formal criteria defined in an exclusion/inclusion table (Table 8 Phase 1) identifying 960 articles to be assessed in Phase 2. All articles fulfilling the formal criteria of phase 1 were randomly assigned and assessed by the different experts in the working group, who decided based on title and abstract and defined criteria (Table 8 Phase 2) whether the article should be included or excluded. After Phase 2, the 381 remaining articles were assessed again following the same criteria that in Phase 2, but based on the full text, which resulted in a total of 280 articles. These 280 articles provided the base of the following analytical part of the QSR and are listed in

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

References forming the base of the QSR. To avoid potential bias by individual decisions during Phases 2 and 3, the eligibility of each article was assessed by two experts. In case of disagreement a third expert assessment was conducted to determine if the article was eligible or not.

Table 8. Summary of exclusion and inclusion criteria used in phases 1 (formal criteria) and 2 (title and abstract review) of the Quick Scoping Review

Exclusion criteria	Inclusion criteria			
Phase 1: Formal criteria				
Non-English	English			
Before 2000 or after 06/2021	Between 01/2000 and 06/2021			
Non original articles	Peer-reviewed original articles			
Non available in SCOPUS or WoK	Available in SCOPUS or WoK			

Exclusion criteria	Inclusion criteria				
Phase 2: Title and Abstract / Phase 3: Full text					
No seaweed aquaculture	Seaweed aquaculture				
Laboratory experiments (<100 L)	Aquaculture systems (>100 L)				
Focus on functions	Focus on services				
New methodologies or products	Assessment of actual services				
Weak link with seaweed aquaculture	Risk & Disservices of seaweed aquaculture				
	Spatial and temporal assessment of seaweed aquaculture				
	Studies on the biotic interplay related to seaweed aquaculture				

5.1.3. Phase II - Classification

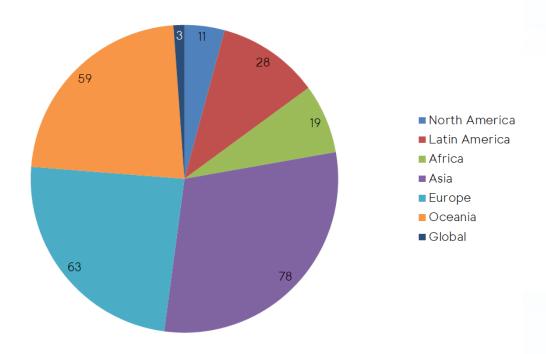
To provide a general insight of the volume and characteristics of the evidence found in the scientific literature, the eligible articles were classified in different categories, included as columns in the Excel spreadsheet with macros. These categories addressed the classification of the different articles, according to 1) species, 2) country, 3) scale, 4) sector, 5) PESTEL analysis, 6) aquaculture type, 7) study protocol, 8) farm size, as well as their

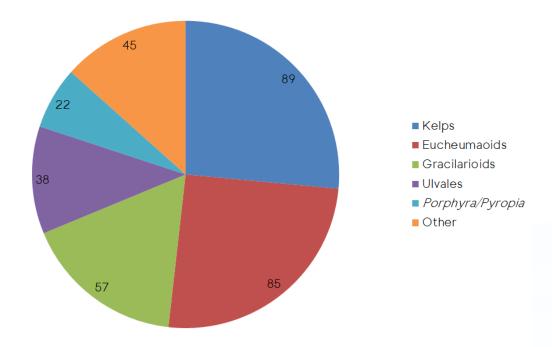
REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

contribution, to different ecosystem services (ES: 9) provisioning. 10) regulating and maintenance, 11) cultural, based on CICES Classification v 5.1. (Haines-Young and Potschin-Young 2018). Corresponding cells were partly to be filled via pre-formulated drop-down menus to ease classification, whereas a separate specification column allowed the expert to provide additional information. For the review findings, the columns 12) knowledge gaps, 13) identified constraints, 14) disservices, 15) disservices comments and 16) expert notes were also provided. An overview of all categories with corresponding subcategories are presented in **Annex 2**. Scientific papers selected for inclusion from Phase 1 were randomly assigned to experts of the working group and classified. A synthesis of the literature reviewed using the QSR method is presented in the following section. Results refer to QSR literature provided in the **References**.

5.2. QUICK SCOPING REVIEW DATA SYNTHESIS

The geographic regions that dominated the studies included in the QSR were Asia (30%), Europe (24%) and Oceania (23%). Fewer studies were conducted in Latin America (11%) and Africa (7%), and fewer still in North America (4%) (**Fig.10**). Only 3% of the studies screened conducted a global analysis of seaweed cultivation.




Fig.10: Geographic regions investigated in the studies identified in the QSR

Of the 280 studies reviewed in the QSR, 213 considered a total of 37 macroalgae genera comprising about 77 species. In studies focusing on European Waters, we found 17 different species, with *Saccharina latissima* as the most highly studied (61% of the considered

- 355 studies), followed by Laminaria digitata (13%) and Alaria esculenta (9%). Nevertheless this
- has to be interpreted with caution, due to potential taxonomic mismatches. Species names
- 357 were validated according to the taxonomic data base algaebase (Guiry and Guiry 2022).
- 358 For analysis, the different seaweed taxa were categorised into the following six taxonomic
- 359 groups:
- 360 i) *Porphyra/Pyropia* (about three genera and four species: *Pyropia sp., Porphyra umbilicalis,*
- 361 Neopyropia tenera, N. yezoensis).
- 362 ii) Eucheumatoids (two genera comprising about three species: Eucheuma denticulatum,
- 363 Kappaphycus alvarezii, K. striatus).
- 364 iii) Gracilarioids (two genera comprising about 18 species: Gracilaria birdiae, G. bursa-
- 365 pastoris, G. cervicornis, G. changii, G. chilensis, G. cornea, G. conferta, G. domingensis, G.
- 366 edulis, G. gracilis, G. parvispora, G. tenuistipitata, G. textorii, G. tikvahiae, G.
- vermiculophylla, **Gracilariopsis** chorda, G. lemaneiformis, G. longissima).
- 368 iv) Ulvoids (one genus comprising about 10 species: Ulva australis, U. clathrata, U.
- 369 compressa, U. intestinalis, U. lactuca, U. ohnoi, U. prolifera, U. pseudorotundata, U.
- 370 reticulata, U. rigida).
- v) Kelps (order Laminariales- eight genera comprising about 11 species: Alaria esculenta,
- 372 Ecklonia maxima, E. cava subsp. stolonifera, Laminaria digitata, L. farlowii, Lessonia
- 373 trabeculata, Macrocystis pyrifera, Nereocystis lutkeana, Saccharina latissima, S. japonica,
- 374 *Undaria* pinnatifida).
- 375 vi) Other (21 genera about 31 species: Anadyomene stellata, Asparagopsis armata, A.
- 376 taxiformis, Blidingia sp., Caulerpa lentillifera, C. racemosa, Chondracanthus teedei, C.
- 377 chamissoi, Codium fragile, C. taylorii, Chaetomorpha sp., Cladophora sp., Derbesia
- 378 tenuissima, Dictyota ciliolata, Furcellaria lumbricalis, Gayralia sp., Gelidium amansii, Hypnea
- 379 musciformis, H. pseudomusciformis, **Padina** australis, **Palmaria** palmata, **Rhizoclonium** sp,
- 380 Sargassum aquifolium, S. fusiforme, S. liebmannii , S. platycarpum, S. siliquosum, S. wightii,
- 381 Spirogyra sp., Turbinaria conoides, Ulothrix sp.).
- 382 Figure 11 shows the number of studies from the QSR that provided data on each seaweed
- taxon. About one third (30.5%) of the studies focused on kelps, mainly represented by the
- 384 genus Saccharina (S. latissima, S. japonica), followed by Gracilarioids (20.7%), mainly
- represented by the genus *Gracilaria*, and the Eucheumatoids (17.9%), presented by 3
- 386 species, followed by the Ulvoids and Porphyral Pyropia. Some studies did not specify a
- 387 seaweed taxa, in which case they were assigned to the category "other."

388

389

390

391

392

393

394

Fig.11: Percentage contribution of seaweed taxa within the literature identified in the QSR (n = 213)

5.2.1. SEAWEED FARMS

The majority of studies (58%) were conducted in nearshore, sheltered waters. Land-based seaweed cultivation was represented in 12% of studies, while offshore seaweed cultivation was represented in 6% of studies and exposed, nearshore sites only represented 2% of studies reviewed in the QSR (Fig.12).

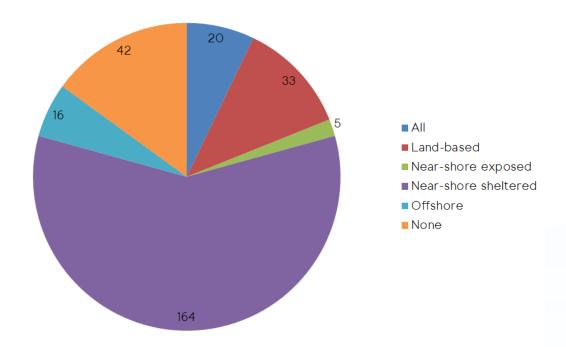


Fig.12 Overview of the types of seaweed cultivation that were identified during the Quick Scoping Review. See the Methods Section for the definition of each cultivation.

In many studies (36%), the scale of the study was not reported. Among studies where the scale of seaweed cultivation was reported, 23% were on a pilot scale, 18% were considered large,15% were considered small, and 8% were considered intermediate scale (Fig.13).

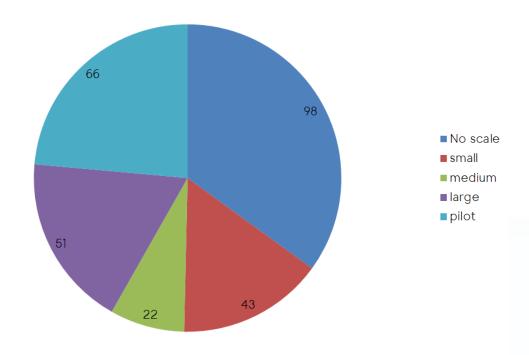


Fig.13 Overview of the scales of seaweed cultivation identified during the Quick Scoping Review (n=280). See the Methods Section for the definition of each scale.

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

5.2.2. ECOSYSTEM SERVICES

Ecosystem Service Classification

The QSR resulted in 214 studies giving evidence of ecosystem services provided by seaweed cultivation. Please note that in some studies evidence for more than one ecosystem services were found. 'Provisioning' (49%) and 'Regulation and Maintenance' (45%) services were identified as the two main categories of ecosystem services provided by seaweed cultivation, but cultural ecosystem services were also represented (Fig.14).

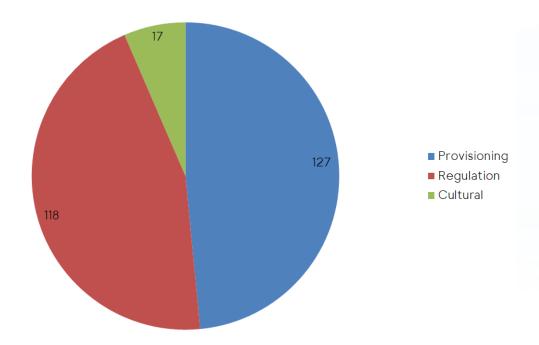


Fig.14 Overview of the number of studies identified through the Quick Scoping Review that provided evidence of ecosystem services provided by seaweed cultivation based on the CICES classification. Within the 'Provisioning' services classification, biomass was the most common (36%) ecosystem service provided by seaweed cultivation, followed by hydrocolloids (30%), food (28%), and lastly feed (6%; Fig.15).

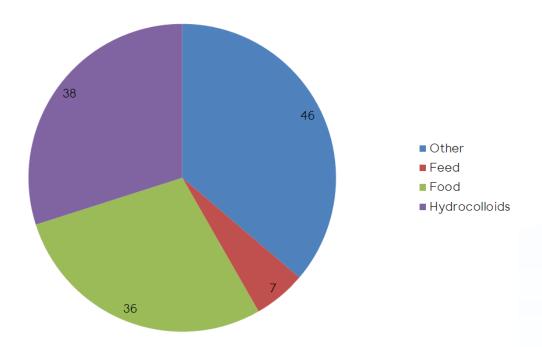
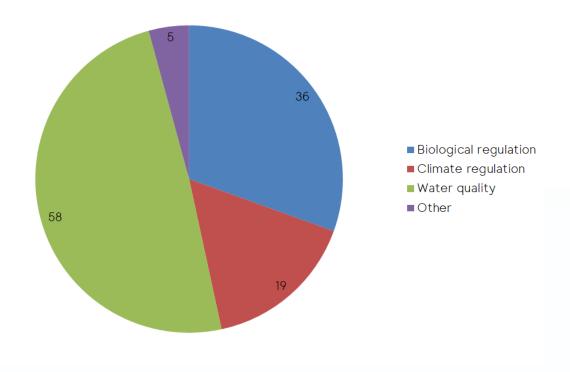



Fig.15 Overview of the types of Provisional Services provided by seaweed cultivation and the number of associated studies based on the Quick Scoping Review.

The QSR showed that the ecosystem service most often provided by seaweed cultivation within the 'Regulation and Maintenance' classification was water quality improvement. The QSR also identified studies (31%) that provided evidence of diverse types of biological regulation and climate regulation (16%; **Fig.16**).

426

427

428

429

430

431

432

433

434

435

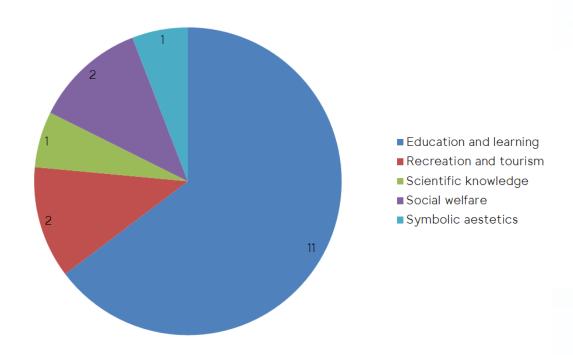
436

437

438

439

440


441

442

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

Fig.16 Overview of the types of Regulating and Maintenance Services provided by seaweed cultivation and the number of associated studies based on the Quick Scoping Review.

Results of the QSR showed that the 'Cultural' services provided by seaweed cultivation include education and learning, recreation and tourism and social welfare (Fig.17). The educational/learning aspect of seaweed culture has provided a viable livelihood source in marginalised coastal communities of countries such as the Philippines, India or Indonesia (269, 273, 105). The activity can promote inclusiveness and gender equality and the studies have pointed out increased awareness to conserve coastal ecosystems. However, there are also constraints (e.g. marketing limitations, farm ownership, climatic risks) to further develop seaweed farming industries. Some of these constraints can be successfully overcome with the help of specific training workshops and technical guidance (195). Seaweed farming has also been perceived as a tourism product in developing countries (103) to enhance the socioeconomic status of the community. Macroalgae culture can have social meaning beyond the economic activity in coastal communities, particularly when the activity dignifies the role of women in society (43). Evidence of seaweed cultivation providing the ecosystem services of scientific knowledge and symbolic aesthetics could only be found in single studies, suggesting that more studies are needed to assess the cultural ecosystem services provided by seaweed cultivation.

443

444

445

446

447

Fig.17 Overview of the types of Cultural Services provided by seaweed cultivation and the number of associated studies based on the Quick Scoping Review.

Analysis of the ecosystem services provided by seaweed taxa (Fig.18) showed that kelp, as well as the Gracillariods and the Ulvoids, as strongest represented taxa, were mainly

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

considered to regulate water quality (29%, 42% and 41% of total ES, respectively), besides providing food and biomass used for other purposes, whereas the Eucheumatoids were mainly considered for hydrocolloid production (45% of total ES).

This suggests that the different groups of taxa seem to provide different ecosystem services in different proportions, and therefore a monoculture on a large-scale would not provide the greatest amount and diversity of ecosystem services. Rather, a combination of different species grown at scale could provide the greatest diversity and number of ecosystem services in Europe.

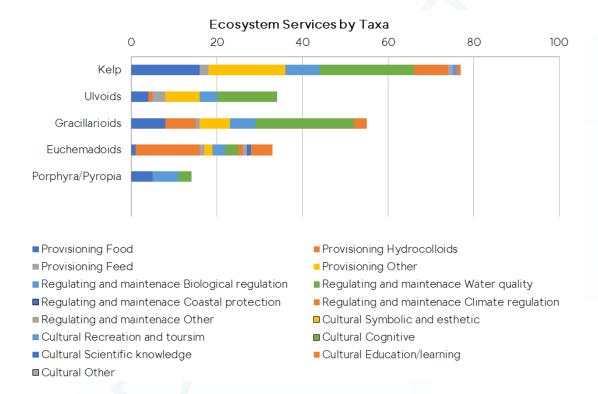


Fig.18 Ecosystem services (classification and service type) provided by different groups of seaweed taxa based on results from the QSR. The x-axis shows the number of studies that showed evidence of ecosystem services provided by each taxa.

Ecosystem Services and the United Nations Sustainability Goals

If the variety of ecosystem services provided by seaweed cultivation based on the results of the QSR are considered within the context of the United Nations Sustainable Development Goals (UN 2015), it is evident that many of the UN SDGs are addressed by seaweed cultivation (Fig.19). Most notably, goals 14 (life below water), 11 (sustainable cities and communities) and 12 (responsible production and consumption) are most often addressed by seaweed cultivation. More specifically, seaweed cultivation contributes to the target to prevent and significantly reduce marine pollution of all kinds, in particular from land-based activities, including marine debris and nutrient pollution and to increase scientific knowledge, develop research capacity and transfer marine technology within

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

SDG 14. The bioremediation services provided by seaweeds also closely link to SDG 6 (clean water and sanitation), considering the interconnections between marine, estuarine and fresh-water systems and that bioremediation of marine waters can contribute to sustainable management of water resources and supplying access to safe water and hence unlocking economic growth and productivity. The target to protect the world's cultural and natural heritage via sustainable tourism within SDG 11 is also addressed. Additionally, seaweed cultivation can contribute to goals 2 (zero hunger), 3 (good health and well-being), 7 (affordable and clean energy), 10 (reduced inequalities), and 13 (climate action). Even the collaboration and efforts by the EWG for this request, including sharing knowledge and expertise, can be considered a contribution to global partnerships and sustainable development (SDG 17, target 17.16).

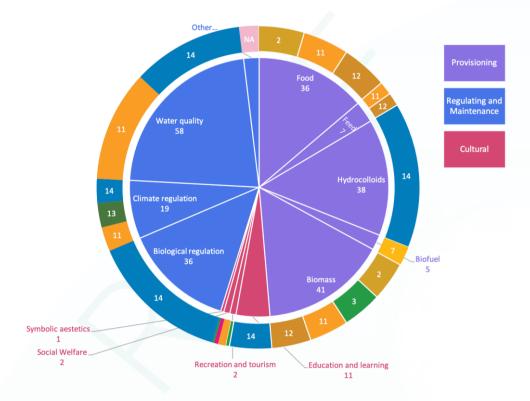


Fig.19 Relationship between each type of ecosystem service provided by seaweed cultivation (inner pie chart) and the related United Nations Sustainable Development Goals (UNSDGs; UN 2015; outer doughnut. The inner pie chart shows the number of studies from the QSR that showed evidence that the named ecosystem service is provided by seaweed cultivation. The ecosystem services are colour-coded according to the CICES classification (Provisioning, Regulating and Maintenance or Culture Services). The outer doughnut shows the UNSDGs that are addressed by the associated ecosystem services provided by seaweed cultivation. The UNSDGs are colour-coded according to the original UNSDG logo and the goal numbers are shown, except in cases where the doughnut slice is too small (2- zero hunger, 3- good health and well-being, 4 - quality education, 7 - affordable and clean energy, 10-reduced inequalities, 11-sustainable cities, 12-responsible consumption and production, 13-climate action, 14-life below water).

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

5.2.3. Constraints

Within the analysed 280 studies, 143 (51%) studies identified a large number of constraints, which were classified within the different PESTEL categories related to seaweed culture. In addition, a further group ('Study') was identified to classify papers (35, equivalent to 12.4%) presenting constraints and weaknesses in their study design, such as limited length and scale of experiments/investigations and/or limitations in the modelling/statistical approach adopted (Annex 3).

Main Constraints. As shown in Fig.20, the key groups of constraint identified in the studies were environmental (40.4%) and technical (34.9%), followed by constraints in the economic, social and political spheres. These different subcategories will be analysed in more detail below.

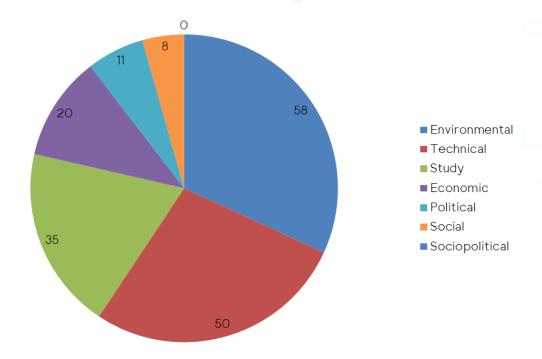


Fig.20 Classification of papers by constraint categories as described in Annex 3

Environmental constraints (Fig.21). Within the environmental constraints, nuisance species were the most dominant group (27.6%), comprising organisms, growing either epiphytic on the fronds of cultivated species (e.g. 191, 129) decreasing their value (e.g. by encrustations); or attached on cultivation structures, forming blooms under favourable conditions, competing for light and nutrients (e.g. 55). This subgroup includes studies on associated planktonic microalgae (e.g. 31) as well as studies on different pathogens causing diseases (e.g. ice-ice disease) strongly affecting the harvest quality and quantity (e.g. 18). As second important environmental constraints water conditions (24.1%) were identified, in which elevated nutrient concentrations play a crucial role in increasing algal growth (e.g. 277,

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

258), whereas sewage from cities may also contribute pollutants, which can negatively affect quality and production in seaweed farms (e.g. 275). Consequently, ambient water quality is a crucial criterion for seaweed farm site selection (e.g. 29, 210). As third identified constraint seasonality (17.2%) is listed, due to the importance of different seasonal driven changes (e.g. water temperature, light, nutrient availability), affecting the growth and chemistry of cultivated macroalgae (e.g. 65, 230). Whereas next to abiotic also changes in biotic factors strongly interact with the growing bioresource, e.g. seasonal phytoplankton blooms (e.g. 255, 99). In addition, the presence of seaweed stocks affects the local fauna, which finds a temporarily limited shelter and habitat in the farms (e.g. 249, 92). Further information on the other subgroups can be found in Annex 3.

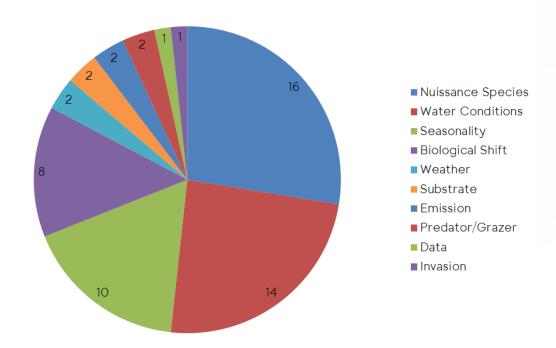


Fig.21 Overview of different environmental constraints as described in Annex 3

Technical constraints (Fig.22). 'Technology' and 'Production' combined accounted for approximately half of the technical constraints identified (28% and 24% respectively). Examples of 'Technology' constraints include difficulties in implementing artificial upwelling to provide nutrients to seaweed farms (e.g. 57) and seaweed production at large scale (e.g. 58); need of developments in the production of low carbon seaweed ethanol (e.g. 109) and mechanisation of farming (e.g. 175). Technical constraints relevant to 'Production' included nitrate uptake and inhibition in seaweed (e.g. 200), investigations on the potential nutrient bio-mitigation capacity of seaweed farms, also in IMTA contexts (e.g. 112, 243). Constraints around technical aspects at the nursery stage were identified in 16% of the papers considered; these included strain selection (e.g. 185), intraspecific crossing between seaweed species (e.g. 276), nutrient uptake in tanks prior deployment of seaweed at sea

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

(e.g. 87). Technical constraints in the context of **product quality** and **post-harvest** procedures and infrastructures were reported in approximately 10% of the papers each. Brief description of the other subcategories can be found in **Annex 3**.

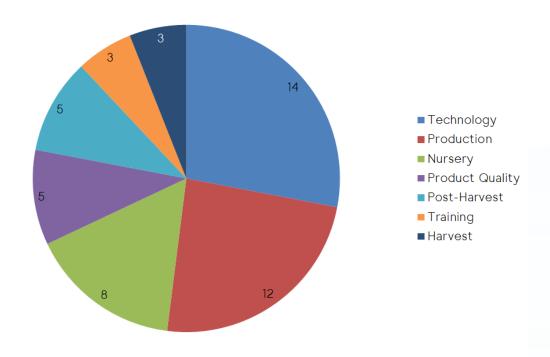


Fig.22 Overview of different technical constraints as described in Annex 3

5.2.4. NEGATIVE IMPACTS/RISKS

The majority (212) of the papers reviewed did not identify negative impacts or risks (Fig.23).

Among those that did report negative impacts or risks, environmental impacts were of the highest concern. Examples of potential environmental impacts of seaweed aquaculture included unknown impacts on deep sea communities, impacts on benthic communities, particularly seagrass beds (however, this was mostly relevant in tropical regions and not in Europe) and competition for nutrients with pelagic ecosystems. Of second highest concern identified was the potential of seaweed aquaculture to create large-scale macroalgal blooms, as has been demonstrated by *Ulva* blooms in the Yellow Sea due to *Pyropia* cultivation. However, all papers reporting the risk of macroalgal blooms resulting from seaweed cultivation were related to the regional events that have occurred in the Yellow Sea, and to date we could find no evidence of macroalgal blooms occurring due to seaweed cultivation in Europe. Additional negative impacts identified in the reviewed papers included introduced species, disease or pest outbreak, biofouling, light attenuation, conflict with other users (e.g. wind parks), increased halocarbon production (in tropical regions), flow reduction due to seaweed farms, changes in organic matter in surface

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

sediments, and decreased benthic diversity. Finally, negative impacts that were placed in the "other" category were mentioned less than three times among the reviewed papers or they could not be assigned to a meaningful category. These included the following: poor acceptance of seaweed aquaculture among stakeholders due to bad experiences in other aquaculture sectors, creation of urban artificial shorelines, provision of jobs, but at the expense of farmers' health, competition with microalgae, ammonia release from seaweeds, competition with microalgae, and sediment deposition in beach areas. Nevertheless, many of these negative impacts were potential, and only very few papers provided clear, documented evidence of direct negative impacts of seaweed aquaculture.

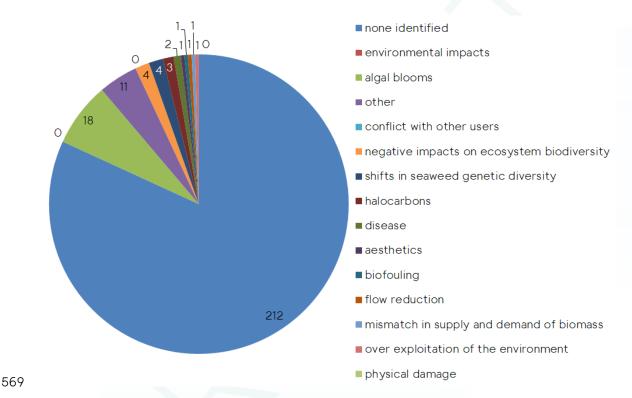
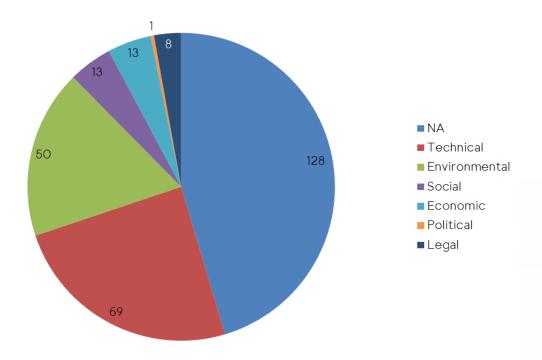


Fig.23 Overview of different negative impacts identified in QSR

5.2.5. KNOWLEDGE GAPS


From the 280 studies analysed, 172 (61 %) of the studies identified knowledge gaps. These gaps were classified into seven categories relating to seaweed culture using the PESTEL framework. In addition, a further category, not applicable ('NA'), was included, when no knowledge gaps were highlighted by the study (128 papers, equivalent to 45.7%) (Fig.24). The seven categories were further divided into 32 sub-categories and a full description of the knowledge gaps identified under each group/ sub-group can be found in **Annex 4**.

The main categories for knowledge gaps (other than NA) with the highest percentage were identified as Technical (24.5 %) and Environmental (18.7 %), followed by the social, economic and legal categories (Fig.24). It should be recognized that the low number of knowledge

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

gaps in the social category might be a reflection of the lack of studies on cultural ecosystem services provided by seaweed cultivation (see Fig.14).

583 584

585

586

587

588

589

590

591

592

593

594

595

596

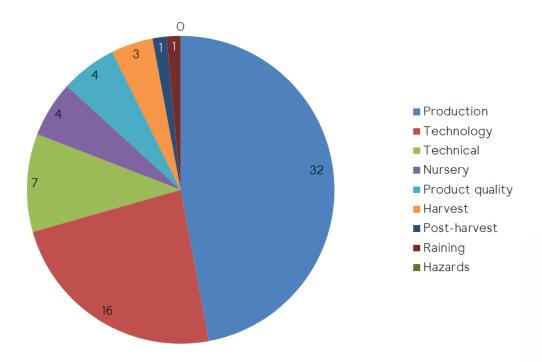
597

598

599

600

601


602

603

Fig.24 Overview of the key **knowledge gaps** identified through the Quick Scoping Review and classified into the eight main categories (n=280)

Technical knowledge gaps. Within the technical knowledge gaps, the production subcategory was by far the most dominant (47%), including how to accurately predict optimal farm size, production biomass and associated growth rates, particularly when using new farming methods (e.g., rafts) and/ or offshore locations (Fig.25). In addition, technical knowledge was highlighted as lacking in seaweed attachment mechanisms, the influence of depth, light exposure and aeration / water movement, in the nursery and on-growing phases, on growth rates and factors that influence/limit nitrate and phosphate uptake at farm, regional and global scales. Also, the potential to monitor carrageenan content, disease outbreaks using satellites and biofiltration rates was also identified as a knowledge gap. The second most cited technical knowledge gap was identified as technology (23.5%), in which knowledge on the effectiveness of new innovative techniques at large scale, such as land/sea based IMTA systems, new seeding techniques, new species, floating longlines was identified. Knowledge gaps were also highlighted in energy saving processing (e.g., byproduct extraction), effectiveness of depth-cycling to increase nutrient availability and prevent thermal stress and bioprospecting. The third most commonly cited knowledge gap was technology - unclassified (10.3%), in which the specific nature of the knowledge gap was not described. Further information on the other technical sub-categories can be found in Fig.24 and Annex 4.

604 605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

Fig.25 Overview of the 'Technical' sub-categories of knowledge gaps identified through the Quick Scoping Review (n=68)

Environmental knowledge gaps. Within the environmental knowledge gaps, wider ecosystem effects were the most dominant sub-category (29.4%), comprising the gaps in knowledge of how upscaling seaweed farms would affect adjacent coral reefs, phytoplankton and microbial communities, seagrass beds, fish assemblages, fish farms, water quality, particularly in light of the creation of novel habitats. The lack of knowledge on the effect of stocking density on the wider ecosystem and the persistence of existing ecosystem services around the cultivation site, once in operation, were also highlighted (Fig.26). The second most cited environmental knowledge gap was identified as nuisance species/ disease (25.5%), in which how to deal with encrusting or epiphytic organisms, which can affect biomass, quality and/or cultivation process were highlighted. A lack of knowledge on seaweed diseases, biofouling, harmful algal bloom formation and their mitigation measures was also identified. The third most commonly cited knowledge gap was emissions and absorption (17.6%), in terms of absorption of CO2, uptake of nutrients and release of dissolved and particulate nitrates and phosphates from large-scale seaweed farms. In addition, lack of knowledge on what the benthic and carbon footprint of these large farms would be and how this would vary dependent on the species that was being cultivated was highlighted. Further information on the other sub-categories can be found in Fig.26 and Annex 4.

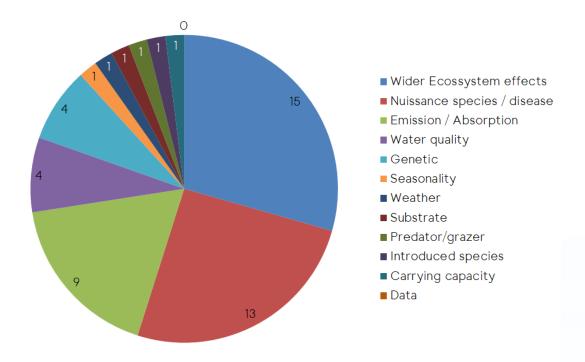


Fig.26 Overview of the 'Environmental' sub-categories of knowledge gaps identified through the Quick Scoping Review (n=51)

6. DISCUSSION

6.1. REFLECTION ON THE METHODOLOGY

Assessing the replies to the first and second round of the Delphi questionnaire, the following observations are made. In reply to the questions, various respondents provided a few key words, not elaborating further. Given the expertise of the working group, these answers have been processed for further analysis. However, cautious of over interpretation, the answers were not reformulated. This shows, for example, in the section on knowledge gaps where answers provided were generally not formulated as a gap. The 22 answers obtained for the first round were considered satisfactory, even though they represented less than 20% of requests sent. The limited number of replies to the second round of the Delphi questionnaire is considered much more limited in terms of opportunities for analysis.

In general, we received a low number of expert opinions from the questionnaire used in the Delphi process. Most of the responses were from academia and research. Very few experts were from industry, NGOs, professional and international organisations. Additionally, few experts focused on marketing and sales, macroalgae genetic characterization and breeding, education, management and conservation of brown algae,

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

forest studies/seaweed diversity/phylogeography, kelp and macroalgae diversity/macroalgae genetics/macroalgae horticulture. These observations suggest that in order to obtain a broader response, the different stakeholders may need to be engaged in different ways. Considering that it can be difficult to define ecosystem services and assess which of these are realistically provided by seaweed cultivation it is possible that some of the participants may have not been familiar with the concept of ecosystem services and how to define them. In the future, it will be necessary to take a more interdisciplinary and multi-stakeholder approach in order to reach a broader audience. Additionally, for future studies it would be important to increase the number of invitations and/or try to contact the potential respondents first, making sure they commit to be involved throughout the entire process.

6.2. QUALITY OF THE COMPILED DATA SET

Findings of the QSR strongly reflected that most of the studies were focused on pilot or small-scale farms, near-shore sheltered seaweed cultivation, mainly conducted in Asian and European countries. This underlies the novelty of seaweed farms in European waters, with no or limited examples of larger scale cultivation compared to other parts of the world where seaweed farms already operate at medium-large scales. It should be pointed out that there was a mismatch between the high scientific interest in seaweed cultivation in Europe (24% of scientific publications, ranked 2nd after Asia according to our QSR) and the low volume of seaweed production in Europe (<0.1% of total seaweed production, FAO 2019), compared to global production. The small size of seaweed farms (pilot and small farms 38% of studies vs. medium and large farms 26%) considered in most of the scientific studies might lead to some bias that needs to be considered when interpreting the results and identifying knowledge gaps, as some processes and services can be size dependent.

While assessing the papers, the expert working group identified weaknesses in experimental design or approach, analysis, and scale (both spatial and temporal), which affected about 12% of the reviewed literature.

The provided data set of QSR revealed a high diversity of seaweed taxa (about 77 species) approached in cultivation, whereas only few species, mainly belonging to the kelps, were the subject of intensive study and thus baseline of the present QSR. This might bias the outcome and conclusions in some way, considering that a variety of additional species/genera are identified and are currently tested for implementation in seaweed aquaculture. Also the approach of polyculture, e.g. IMTA combining the cultivation of different taxa at the same location, could alter the received findings in future.

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

Although European studies dealt with 17 different species, most of the studies were focused on kelps (*Saccharina latissima*, *Laminaria digitata* and *Alaria esculenta*) due to their present commercial value.

It must be also noted that there will probably be a time lag between the ongoing research and the results already published, as the former may not be represented in the QSR. On the other hand, as a result of the economical profitability of new applications and the patents limitations, these studies may be underrepresented in the published scientific literature.

6.3. ECOSYSTEM SERVICES PROVIDED BY SEAWEED CULTIVATION

While 85% of the ecosystem services provided by seaweed cultivation based on the Delphi process fell into the "Regulating and Maintenance" category, the QSR results showed 45% of studies provided evidence of "Regulating and Maintenance" services and 48.5% provided evidence of "Provisioning" services. However, in the second round of the Delphi process, when participants were asked to rank the ecosystem services in order of importance, provisioning services (e.g. food and hydrocolloids) were ranked as the most important ecosystem services. Although the ranking of the experts was not necessarily reflected in the literature, both methods identified the following top six ecosystem services provided by seaweed cultivation:

- 697 1) Provisioning food,
- 698 2) provisioning hydrocolloids and feed,
- 699 3) regulating water quality,
- 700 4) provisioning habitats,
- 701 5) provisioning of nurseries and
- 702 6) regulating climate.

6.4. KNOWLEDGE GAPS INHIBITING SCALE-UP AND DELIVERY OF ECOSYSTEM SERVICES BY MACROALGAE CULTIVATION

Diverse 'Technological' knowledge gaps were identified by both methods at all scales of the macroalgae cultivation process, from nurseries (e.g. strain selection, attachment effectiveness) to production and scale-up (e.g. biofiltration rates, ensuring consistent biomass/product quality, effectiveness of new technologies at scale) to processing (e.g. how to improve energy efficiency). This focus on technological knowledge gaps may result from the fact that the majority of the respondents to the Delphi questionnaire were from Europe, who generally may have less experience with seaweed cultivation at large scales.

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

The second most common category of knowledge gaps according to the Delphi process was 'Economic' (e.g. detailed market information/data, valorization of ecosystem services, carbon credits, and lack of successful business cases). In contrast, the second most common knowledge gap category identified during the QSR was 'Environmental' (e.g. wider ecosystem effects, nuisance species/disease, and emissions/absorption). The discrepancy in most commonly identified knowledge gaps between the two methods may be due to the fact that the economic knowledge gaps in the seaweed industry are often not reflected or reported in the scientific literature (e.g. business cases, yield costs may not be shared to protect industrial interests).

Based on suggestions from the expert respondents in the Delphi process, there is a clear need for a European-wide strategy for reducing risk for seaweed producers, providing clear standards and guidelines for obtaining permits, and providing financial support to improve technological innovation that will ensure consistent quality. Furthermore, it should be noted that seaweed biomass has generally a low gross monetary value and the labour conditions associated with seaweed aquaculture to be profitable are in many cases not acceptable for the European standards and legislation. In this sense, it would be critical for the development of European seaweed aquaculture to identify high-value products and technological innovations to reduce costs in terms of work hours.

An additional knowledge gap that was identified when analysing the ecosystem services provided by different taxa is that it needs to be determined if polyculture of macroalgae (using several algal species) will provide more ecosystem services than monoculture at a large scale.

Despite the fact that many experts ranked climate regulation as an ecosystem service provided by macroalgae cultivation, strong evidence of this service is still lacking in the literature and there are still many open questions regarding if and how macroalgae cultivation at a large scale can sequester carbon, and the carbon balance along the production chain.

6.5. Main constraints limiting scale-up of macroalgae cultivation

The observed discrepancies between the constraints identified during the Delphi process (mainly Political/Legal, Technological, Economic) and the QSR (mainly Environmental and Technological), might be partly explained, as mentioned above for the knowledge gaps, by the novel/developing status of the seaweed aquaculture in European waters thus it shows a prioritised need for developing a required political/legal framework and establishing appropriate farming technologies. In addition, the high cost of labour in Europe compared to other countries where seaweed cultivation is well established requires a different approach, for example by incorporating technological advances that automate and, hence,

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

reduce the cost of, seaweed production. Concerning the environmental constraints, the occurrence of nuisance species was the most dominant factor. This constraint is also reflected in the high number of papers that reported the occurrence of *Ulva* spp. blooms resulting from *Pyropia* sp. cultivation in the Yellow Sea as a negative impact of seaweed cultivation. Additional environmental constraints included site specific inter-environmental dynamics (e.g. seasonal appearance of nuisance species, alterations in water quality, pollution). Depending on regional water quality standards, some areas of Europe may be unsuitable for seaweed cultivation due to pollution. There are also seasonal restrictions in Europe that are not necessarily relevant in other regions where large-scale seaweed cultivation is already well established and can be carried out all year round. These seasonal restrictions limit the production period of some species, the ecosystem services that they can provide are not always present and hence the profit obtained. This reflects on the one hand the need for further investigation to understand the different abiotic and biotic factors involved and also underlines the required flexibility concerning site specific adaptations for establishing a working seaweed farm. In this context, accompanying monitoring could be a way to provide further support for the planning of new and further implementation of already established sites.

6.6. POTENTIAL NEGATIVE IMPACTS OR TRADE-OFFS OF SCALING-UP MACROALGAL CULTIVATION

Unknown environmental impacts to deep sea, benthic and pelagic ecosystems was one of the most commonly identified potential negative impacts of macroalgae cultivation both among the expert responses and the reviewed articles. This point is especially relevant if the goal is climate change mitigation due to the scale required and the large amount of biomass that could be entered in the deep ocean.

In addition, conflicts with other users, shifts in seaweed genetic diversity, negative impacts on ecosystem biodiversity and reductions in water flow were identified as potential negative impacts of scaling-up macroalgae cultivation by both methods. Nevertheless, most negative impacts were identified as potential or unknown and few studies provided direct evidence of negative impacts of seaweed cultivation, except in cases of poor management practice (e.g. cloning, uncontrolled transport of strains between sites/regions). This underlines again the need of further, accompanying multidisciplinary approaches and transparency, considering site specific conditions and need for comparative examples. In this context the built and interlinking of interdisciplinary seaweed farmer- research networks, providing information and access to developing methodologies, as well as information on successful case studies, would provide a sustainable way to support the further developments in the seaweed cultivation sector.

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

784 7. CONCLUSIONS

The present study highlights that seaweed cultivation can provide many ES to humanity. However, one of the main issues recognized during the presented study was the understanding of ES themselves by the different stakeholders. There was often no clear evidence of ES provided found in the literature and also some aspects, like cultural impact etc. were missing in the responses to the questionnaires during Delphi process. At present, there seems to be not only uncertainties in definitions, but also a lack in understanding of the potential importance of the defined ES for further development of the seaweed cultivation industry. Clear definitions of ecosystem services are required to be communicated and agreed within and among stakeholders involved in seaweed cultivation to facilitate further valorisation and analysis of ecological and economical footprint of large-scale seaweed production. In this context the presented approach combining CICES v.5 and PESTEL analysis provided a valuable tool to define and categorise ES in the seaweed cultivation sector.

Most of the studies addressing ES provided by seaweed aquaculture were not comprehensive and overall focused on a few services (e.g. biomass provision, nutrient removal, biological regulation or blue carbon), while others (e.g. cultural services) were poorly represented. However, the number of studies reporting a certain service (e.g. regulating water quality) is not necessarily a direct reflection of the importance or value of that particular service. There is clearly a bias in the literature on studies investigating bioremediation of seaweeds, but very few studies provide valorisation of this service. In contrast, cultural services such as improving social welfare or gender equality are poorly represented in the literature. That is not to say that such cultural services are less valuable than water quality regulation, but such a direct comparison of the value of different ecosystem services provided by seaweed cultivation is still lacking, as it was outside the scope of this study.

Relevant knowledge gaps have been identified in most of the PESTEL categories, particularly in technological, economical/social and environmental issues. Technological improvements, and the identification of valuable products and species were the main actions suggested by experts during the Delphi process in order to harness the potential of seaweed aquaculture in Europe. The lack of a clear legislation about biomass quality standards (e.g. content of heavy metals, contamination by bacteria and other compounds of potential concern for human health) and guidelines to obtain the necessary permits is another problem usually highlighted by seaweed farmers constraining the development of seaweed cultivation. In addition, only limited information about the potential consequences of climate change for macroalgae cultivation has been reported so far. Even in these cases,

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

the scale of aquaculture facilities was generally limited and currently there is an important uncertainty about the upscaling of the activity. It should be noted that climate and environmental conditions, and the viability of seaweed aquaculture and its provision of ES could be interrelated when seaweed aquaculture is developed at a large scale. For instance, in some regions where seaweed aquaculture has been developed at large scale, the fertilisation of coastal waters has been necessary to increase or maintain the production of seaweeds. This raises the need to control the nutrient fluxes connected with large-scale seaweed cultivation. Although there is a relevant number of studies dealing with nutrient (including carbon) removal and bioremediation, most of the studies did not consider the entire life cycle, and overall did not discuss the scale of the facilities or cultures necessary for an effective remediation.

Several of the ES will be delivered only at large scale cultivation (e.g. carbon sequestration, climate regulation). At this scale of operations there could be multiple associated unknown side effects which need to be further investigated (e.g. pumping deep waters to fertilise seaweed which not only bring to the surface required growth-limiting nutrients, but also already sequestered carbon).

836 8. <u>Bibliography</u>

007	D	
837	REFER	ENCES FOR THE METHODOLOGICAL PART
838	Basu, F	R (2004) Tools for Analysis - PESTLE Analysis. In: Implementing Quality: A Practical
839		Guide to Tools and Techniques, First edition., London, Thomson Learning, pp. 98-
340		100.
841	Campl	pell, I., Macleod, A., Sahlmann, C., Neves, L., Funderud, J., Øverland, M., Hughes, A.D., &
842		Stanley, M. (2019). The environmental risks associated with the development of
843		seaweed farming in Europe - prioritising key knowledge gaps. Frontiers in Marine
844		Science 6(107).
845	Collins	, C., Richards, R., Reeder, A. I., & Gray, A. R. (2015). Food for thought: edible gardens
846		in New Zealand primary and secondary schools. Health Promot J Austr, 26(1), 70-
847		73.
848	Dalkey	, N., & Helmer, O. (1963). An Experimental Application of the Delphi Method to the
849	J	Use of Experts. Management Science, 9(3), 458-467.
850	Eklipse	e Expert Working Group Macroalgae (2021). Method Protocol, August 2021
851	•	2019). The State of World Fisheries and Aquaculture. 244 pp.
852		M.D. & Guiry, G.M. (2022). AlgaeBase. World-wide electronic publication, National
853	3	University of Ireland, Galway. https://www.algaebase.org; searched on 30.January
854		2022.
855	Haines	-Young, R., & Potschin-Young, M. (2018). Revision of the Common International
856		Classification for Ecosystem Services (CICES V5.1): A Policy Brief. One Ecosystem,
857		3, e27108.
858	Mukhe	rjee, N., Hugé, J., Sutherland, W. J., McNeill, J., Van Opstal, M., Dahdouh-Guebas, F., &
859		Koedam, N. (2015). The Delphi technique in ecology and biological conservation:
860		applications and guidelines. Methods in Ecology and Evolution, 6(9), 1097-1109.
861	U. N. (2	2015). Sustainable Development Goals (SDGs).
	· ·	
862	REFER	ENCES FORMING THE BASE OF THE QSR
863	1.	Abhilash, K. R., Sankar, R., Purvaja, R., Deepak, S. V., Sreeraj, C. R., Krishnan, P., Sekar,
864	''	V., Biswas, A. K., Kumarapandiyan, G., & Ramesh, R. (2019). Impact of long-term
865		seaweed farming on water quality: a case study from Palk Bay, India. Journal of
866		Coastal Conservation, 23(2), 485–499. https://doi.org/10.1007/s11852-018-00678-4
000		Coastal Conservation, 25(2), 400 477. <u>https://doi.org/10.1007/311002-010-00070-4</u>
867	2.	Abreu, M. H., Pereira, R., Yarish, C., Buschmann, A. H., & Sousa-Pinto, I. (2011). IMTA
868		with <i>Gracilaria vermiculophylla</i> : Productivity and nutrient removal performance of
869		the seaweed in a land-based pilot scale system. Aquaculture (Amsterdam,
870		Netherlands), 312(1-4), 77-87. https://doi.org/10.1016/j.aquaculture.2010.12.036

- 3. Malik, A., Mertz, O., & Fensholt, R. (2017). Mangrove forest decline: consequences for livelihoods and environment in South Sulawesi. Regional Environmental Change, 17(1), 157-169.
- 4. Aeni, O. N.; Aslan, L. O. M.; Iba, W.; Patadjai, A. B.; Rahim, M. & Balubi, M.(2019) Effect of different seedling sources on growth and carrageenan yield of seaweed *Kappaphycus alvarezii* cultivated in Marobo Waters, Muna Regency, Southeast (Se) Sulawesi, Indonesia. IOP Conf. Ser. Earth Environ. Sci. https://doi.org/10.1088/1755-1315/382/1/012015/meta
- 5. Afiah, R. N., Supartono, W., & Suwondo, E. (2019). Potential of heavy metal contamination in cultivated red seaweed (*Gracilaria* sp. and *Eucheuma cottonii*) from coastal area of Java, Indonesia. IOP Conference Series. Earth and Environmental Science, 365(1), 012024. https://doi.org/10.1088/1755-1315/365/1/012024
- 6. Aitken, D., Bulboa, C., Godoy-Faundez, A., Turrion-Gomez, J. L., & Antizar-Ladislao, B. (2014). Life cycle assessment of macroalgae cultivation and processing for biofuel production. Journal of Cleaner Production, 75, 45–56. https://doi.org/10.1016/j.jclepro.2014.03.080
- Ajith, S., Rojith, G., Zacharia, P. U., Nikki, R., Sajna, V. H., Liya, V. B., & Grinson, G.
 (2019). Production, characterization and observation of higher carbon in *Sargassum wightii* biochar from Indian coastal waters. Journal of Coastal Research, 86(sp1), 193.
 https://doi.org/10.2112/si86-029.1
- 892 8. Aldridge, J. N., Mooney, K., Dabrowski, T., & Capuzzo, E. (2021). Modelling effects of 893 seaweed aquaculture on phytoplankton and mussel production. Application to 894 Strangford Lough (Northern Ireland). Aquaculture (Amsterdam, Netherlands), 895 536(736400), 736400. https://doi.org/10.1016/j.aquaculture.2021.736400
- Andrade, H. M. M. de Q., Rosa, L. P., Souza, F. E. S. de, Silva, N. F. da, Cabral, M. C., & Teixeira, D. I. A. (2020). Seaweed production potential in the Brazilian northeast: A study on the Eastern coast of the state of Rio Grande do Norte, RN, Brazil.
 Sustainability, 12(3), 780. https://doi.org/10.3390/su12030780
- 900 10. Ashkenazi, D. Y., Israel, A., & Abelson, A. (2019). A novel two-stage seaweed 901 integrated multi-trophic aquaculture. Reviews in Aquaculture, 11(1), 246–262. 902 https://doi.org/10.1111/rag.12238
- 903 11. Aslan, L. O. M., Iba, W., Bolu, L. O. R., Ingram, B. A., Gooley, G. J., & de Silva, S. S. 904 (2015). Mariculture in SE Sulawesi, Indonesia: Culture practices and the socio economic aspects of the major commodities. Ocean & Coastal Management, 116, 906 44–57. https://doi.org/10.1016/j.ocecoaman.2015.06.028

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

907 12. Azevedo, I. C., Duarte, P. M., Marinho, G. S., Neumann, F., & Sousa-Pinto, I. (2019). 908 Growth of Saccharina latissima (Laminariales, Phaeophyceae) cultivated offshore 909 conditions. Phycologia, 58(5). 504-515. exposed 910 https://doi.org/10.1080/00318884.2019.1625610 911 13. Bach, L. T., Tamsitt, V., Gower, J., Hurd, C. L., Raven, J. A., & Boyd, P. W. (2021). 912 Testing the climate intervention potential of ocean afforestation using the Great 913 Communications, Atlantic Sargassum Belt. Nature 12(1). 914 https://doi.org/10.1038/s41467-021-22837-2 915 14. Badis, Y., Klochkova, T. A., Strittmatter, M., Garvetto, A., Murúa, P., Sanderson, J. C., 916 Kim, G. H., & Gachon, C. M. M. (2019). Novel species of the oomycete Olpidiopsis 917 potentially threaten European red algal cultivation. Journal of Applied Phycology, 918 31(2), 1239-1250. https://doi.org/10.1007/s10811-018-1641-9 919 15. Badraeni R., Syamsuddin, H., & Samawi, F. (2020). Weeds, epiphytes and ice-ice 920 disease on green-strained Kappaphycus alvarezii (Doty) in takalar waters, South 921 Sulawesi in different seasons and locations of cultivation. Plant Archives, 20 (2). 922 2327-2332 923 16. Bak, U. G., Mols-Mortensen, A., & Gregersen, O. (2018). Production method and cost 924 of commercial-scale offshore cultivation of kelp in the Faroe Islands using multiple 925 Research. 33. 36-47. partial harvesting. Algal 926 https://doi.org/10.1016/j.algal.2018.05.001 927 17. Bambaranda, B.V.A.S.M., Tsusaka, T. W., Chirapart, A., Salin, K. R., & Sasaki, N. (2019). 928 Capacity of Caulerpa lentillifera in the removal of fish culture effluent in a 929 recirculating aquaculture system. Processes (Basel, Switzerland), 7(7), 440. 930 https://doi.org/10.3390/pr7070440 931 18. Barberi, O. N., Byron, C. J., Burkholder, K. M., St. Gelais, A. T., & Williams, A. K. (2020). 932 Assessment of bacterial pathogens on edible macroalgae in coastal waters. Journal 933 of Applied Phycology, 32(1), 683-696. https://doi.org/10.1007/s10811-019-01993-5 934 19. Basaure, H., Macchiavello, J., Sepúlveda, C., Sáez, F., Yañez, D., Vega, L., & Marín, C. 935 (2021). Sea bottom culture of *Chondracanthus chamissoi* (Rhodophyta: Gigartinales) 936 by vegetative propagation at Puerto Aldea, Tongoy Bay (Northern Chile). 937 Aquaculture Research, 52(5), 2025-2035. https://doi.org/10.1111/are.15051 938 20. Beltran-Gutierrez, M., Ferse, S. C. A., Kunzmann, A., Stead, S. M., Msuya, F. E., 939 Hoffmeister, T. S., & Slater, M. J. (2016). Co-culture of sea cucumber Holothuria 940 scabra and red seaweed Kappaphycus striatum. Aquaculture Research, 47(5), 1549-

2021 | August Method Protocol 42

1559. https://doi.org/10.1111/are.12615

963

964

965

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

- 21. Ben-Ari, T., Neori, A., Ben-Ezra, D., Shauli, L., Odintsov, V., & Shpigel, M. (2014).

 Management of *Ulva lactuca* as a biofilter of mariculture effluents in IMTA system.

 Aquaculture (Amsterdam, Netherlands), 434, 493–498.

 https://doi.org/10.1016/j.aguaculture.2014.08.034
- 946 22. Bermejo, R., Cara, C. L., Macías, M., Sánchez-García, J., & Hernández, I. (2020).
 947 Growth rates of *Gracilariopsis longissima*, *Gracilaria bursa-pastoris* and
 948 *Chondracanthus teedei* (Rhodophyta) cultured in ropes: implication for N
 949 biomitigation in Cadiz Bay (Southern Spain). Journal of Applied Phycology, 32(3),
 950 1879–1891. https://doi.org/10.1007/s10811-020-02090-8
- 951 23. Bermejo, R., Macías, M., Cara, C. L., Sánchez-García, J., & Hernández, I. (2019).
 952 Culture of *Chondracanthus teedei* and *Gracilariopsis longissima* in a traditional
 953 salina from southern Spain. Journal of Applied Phycology, 31(1), 561–573.
 954 https://doi.org/10.1007/s10811-018-1516-0
- 24. Billing, S.L., Rostan, J., Tett, P., & Macleod, A. (2021). Is social license to operate
 relevant for seaweed cultivation in Europe? Aquaculture (Amsterdam, Netherlands),
 534(736203), 736203. https://doi.org/10.1016/j.aguaculture.2020.736203
- 958 25. Bindu, M. S. (2011). Empowerment of coastal communities in cultivation and processing of *Kappaphycus alvarezii*—a case study at Vizhinjam village, Kerala, India.
 960 Journal of Applied Phycology, 23(2), 157–163. https://doi.org/10.1007/s10811-010-9597-4
 - 26. Biswas, G., Kumar, P., Kailasam, M., Ghoshal, T. K., Bera, A., & Vijayan, K. K. (2019). Application of integrated multi trophic aquaculture (IMTA) concept in brackishwater ecosystem: The first exploratory trial in the sundarban, India. Journal of Coastal Research, 86(sp1), 49. https://doi.org/10.2112/si86-007.1
- 27. Bolton, J. J., Robertson-Andersson, D. V., Shuuluka, D., & Kandjengo, L. (2009).
 Growing *Ulva* (Chlorophyta) in integrated systems as a commercial crop for abalone
 feed in South Africa: a SWOT analysis. Journal of Applied Phycology, 21(5), 575–583.
 https://doi.org/10.1007/s10811-008-9385-6
- 28. Bouwman, A. F., Pawłowski, M., Liu, C., Beusen, A. H. W., Shumway, S. E., Glibert, P. M.,
 & Overbeek, C. C. (2011). Global hindcasts and future projections of coastal nitrogen
 and phosphorus loads due to shellfish and seaweed aquaculture. Reviews in
 Fisheries Science, 19(4), 331–357. https://doi.org/10.1080/10641262.2011.603849
- 29. Broch, O. J., Alver, M. O., Bekkby, T., Gundersen, H., Forbord, S., Handå, A., Skjermo,
 J., & Hancke, K. (2019). The kelp cultivation potential in coastal and offshore regions
 of Norway. Frontiers in Marine Science, 5. https://doi.org/10.3389/fmars.2018.00529

990

991

992

993

994

995

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

- 30. Brugere, C., Msuya, F. E., Jiddawi, N., Nyonje, B., & Maly, R. (2020). Can innovation empower? Reflections on introducing tubular nets to women seaweed farmers in Zanzibar. Gender, Technology and Development, 24(1), 89–109. https://doi.org/10.1080/09718524.2019.1695307
- 31. Bruhn, A., Tørring, D. B., Thomsen, M., Canal-Vergés, P., Nielsen, M. M., Rasmussen,
 M. B., Eybye, K. L., Larsen, M. M., Balsby, T. J. S., & Petersen, J. K. (2016). Impact of
 environmental conditions on biomass yield, quality, and bio-mitigation capacity of
 Saccharina latissima. Aquaculture Environment Interactions, 8, 619–636.
 https://doi.org/10.3354/aei00200
- 986 32. Buck, B.H., & Buchholz, C. M. (2005). Response of offshore cultivated *Laminaria* 987 saccharina to hydrodynamic forcing in the North Sea. Aquaculture (Amsterdam, 988 Netherlands), 250(3-4), 674-691. https://doi.org/10.1016/i.aquaculture.2005.04.062
 - 33. Buschmann, A. H., Prescott, S., Potin, P., Faugeron, S., Vásquez, J. A., Camus, C., Infante, J., Hernández-González, M. C., Gutíerrez, A., & Varela, D. A. (2014). The status of kelp exploitation and marine agronomy, with emphasis on *Macrocystis pyrifera*, in Chile. In Advances in Botanical Research (pp. 161–188). Elsevier.
 - 34. Cabral, P., Levrel, H., Viard, F., Frangoudes, K., Girard, S., & Scemama, P. (2016). Ecosystem services assessment and compensation costs for installing seaweed farms. Marine Policy, 71, 157–165. https://doi.org/10.1016/j.marpol.2016.05.031
- 35. Calheiros, A. C., Sales, L. P. M., Pereira Netto, A. D., Cavalcanti, D. N., Castelar, B., &
 Reis, R. P. (2021). Commercial raw materials from algaculture and natural stocks of
 Ulva spp. Journal of Applied Phycology, 33(3), 1805–1818.
 https://doi.org/10.1007/s10811-021-02413-3
- 36. Campbell, I., Kambey, C. S. B., Mateo, J. P., Rusekwa, S. B., Hurtado, A. Q., Msuya, F. E., Stentiford, G. D., & Cottier-Cook, E. J. (2020). Biosecurity policy and legislation for the global seaweed aquaculture industry. Journal of Applied Phycology, 32(4), 2133–2146. https://doi.org/10.1007/s10811-019-02010-5
- 37. Campos, C. V. F. da S., Moraes, L. B. S. de, Farias, R. da S., Severi, W., Brito, L. O., & Gálvez, A. O. (2019). Phytoplankton communities in aquaculture system (integration of shrimp and seaweed). Chemistry in Ecology, 35(10), 903–921. https://doi.org/10.1080/02757540.2019.1668378
- 38. Chai, Z. Y., He, Z. L., Deng, Y. Y., Yang, Y. F., & Tang, Y. Z. (2018). Cultivation of seaweed *Gracilaria lemaneiformis* enhanced biodiversity in a eukaryotic plankton community as revealed via metagenomic analyses. Molecular Ecology, 27(4), 1081–1011 1093. https://doi.org/10.1111/mec.14496

1012 39. Charlier, R. H., & Beavis, A. M. (2000). Development of a nearshore weed-screen. A 1013 nature coastal defence idea. The International Journal of Environmental Studies. 1014 57(4), 457-468. https://doi.org/10.1080/00207230008711289 1015 40. Ajjabi, C.L., Abaab, M., & Segni, R. (2018). The red macroalga Gracilaria verrucosa in 1016 co-culture with the Mediterranean mussels Mytilus galloprovincialis: productivity 1017 and nutrient removal performance. Aquaculture International: Journal of the European Aquaculture Society, 26(1), 253-266. https://doi.org/10.1007/s10499-017-1018 1019 0206-2 1020 41. Chow, F., Macchiavello, J., Cruz, S. S., Fonck, E., & Olivares, J. (2001). Utilization of 1021 Gracilaria chilensis (Rhodophyta: Gracilariaceae) as a biofilter in the depuration of 1022 effluents from tank cultures of fish, oysters, and sea urchins. Journal of the World 1023 215-220. https://doi.org/10.1111/j.1749-Aquaculture Society, 32(2), 7345.2001.tb01098.x 1024 1025 42. Clements, J. C., & Chopin, T. (2017). Ocean acidification and marine aquaculture in 1026 North America: potential impacts and mitigation strategies. Reviews in Aquaculture, 9(4), 326-341. https://doi.org/10.1111/rag.12140 1027 1028 43. Cooke, M.F. (2004). Symbolic and social dimensions in the economic production of 1029 seaweed. Asia Pacific Viewpoint, 45(3), 387-400. https://doi.org/10.1111/j.1467-1030 8373.2004.00246.x 44. Cuaton, G. P. (2019). A post-disaster gendered value chain analysis on seaweed 1031 1032 farming after Super Typhoon Haiyan in the Philippines. Journal of Enterprising 1033 Communities People and Places in the Global Economy, 13(4), 508-524. https://doi.org/10.1108/jec-11-2018-0091 1034 1035 45. de Carvalho, L.L., de Souza, E.G.A., da Mata Júnior, M. R., & Villaça, R.C. (2017). 1036 Assessment of rocky reef fish assemblages close to seaweed farming. Aquaculture 1037 Research, 48(2), 481-493. https://doi.org/10.1111/are.12896 1038 46. Demel, S., Longo, A., & Mariel, P. (2020). Trading off visual disamenity for renewable 1039 energy: Willingness to pay for seaweed farming for energy production. Ecological 1040 Economics: The Journal of the International Society for Ecological Economics, 1041 173(106650), 106650. https://doi.org/10.1016/j.ecolecon.2020.106650 1042 47. Diatin, I., Effendi, I., & Alvina Taufik, M. (2020). The production function and 1043 profitability analysis of Gracilaria sp. seaweed polyculture with milkfish (Chanos 1044 chanos) and black tiger shrimp (Penaeus monodon). Biodiversitas: Journal of 1045 Biological Diversity, 21(10). https://doi.org/10.13057/biodiv/d211039 1046 48. Dickson, R., Brigljevic, B., Lim, H., & Liu, J. (2020). Maximizing the sustainability of a 1047 macroalgae biorefinery: a superstructure optimization of a volatile fatty acid

- platform. Green Chemistry: An International Journal and Green Chemistry
 Resource: GC, 22(13), 4174–4186. https://doi.org/10.1039/d0gc00430h
- 1050 49. Dumilag, R. V., Salvador, R. C., & Halling, C. (2016). Genotype introduction affects 1051 population composition of native Philippine Kappaphycus (Gigartinales, 1052 Rhodophyta). Conservation Genetics Resources. 8(4), 439-441. 1053 https://doi.org/10.1007/s12686-016-0591-2
- 50. Eklöf, J. S., de la Torre Castro, M., Adelsköld, L., Jiddawi, N. S., & Kautsky, N. (2005).

 Differences in macrofaunal and seagrass assemblages in seagrass beds with and
 without seaweed farms. Estuarine, Coastal and Shelf Science, 63(3), 385–396.

 https://doi.org/10.1016/j.ecss.2004.11.014
- 51. Eklöf, J. S., Henriksson, R., & Kautsky, N. (2006). Effects of tropical open-water seaweed farming on seagrass ecosystem structure and function. Marine Ecology Progress Series, 325, 73–84. https://doi.org/10.3354/meps325073
- 52. Eklöf, J.S., de la Torre-Castro, M., Nilsson, C., & Rönnbäck, P. (2006). How do seaweed farms influence local fishery catches in a seagrass-dominated setting in Chwaka Bay, Zanzibar? Aquatic Living Resources, 19(2), 137–147. https://doi.org/10.1051/alr:2006013
- 1065 53. Faisan, J. P., Jr, Luhan, M. R. J., Sibonga, R. C., Mateo, J. P., Ferriols, V. M. E. N., Brakel, 1066 J., Ward, G. M., Ross, S., Bass, D., Stentiford, G. D., Brodie, J., & Hurtado, A. Q. (2021). 1067 Preliminary survey of pests and diseases of eucheumatoid seaweed farms in the of Applied 1068 Journal 33(4), 2391-2405. Philippines. Phycology, 1069 https://doi.org/10.1007/s10811-021-02481-5
- 54. Fan, L. I. N., Meirong, D. U., Hui, L. I. U., Jianguang, F. A. N. G., Lars, A., & Zengjie, J. I.
 A. N. G. (2020). A physical-biological coupled ecosystem model for integrated aquaculture of bivalve and seaweed in Sanggou Bay. Ecological Modelling, 431(109181), 109181. https://doi.org/10.1016/j.ecolmodel.2020.109181
- 55. Fan, S., Fu, M., Wang, Z., Zhang, X., Song, W., Li, Y., Liu, G., Shi, X., Wang, X., & Zhu, M. (2015). Temporal variation of green macroalgal assemblage on *Porphyra* aquaculture rafts in the Subei Shoal, China. Estuarine, Coastal and Shelf Science, 163, 23–28. https://doi.org/10.1016/j.ecss.2015.03.016
- 56. Fan, W., Zhang, Z., Yao, Z., Xiao, C., Zhang, Y., Zhang, Y., Liu, J., Di, Y., Chen, Y., & Pan, Y. (2020). A sea trial of enhancing carbon removal from Chinese coastal waters by stimulating seaweed cultivation through artificial upwelling. Applied Ocean Research, 101(102260), 102260. https://doi.org/10.1016/j.apor.2020.102260

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

- 57. Fan, W., Zhao, R., Yao, Z., Xiao, C., Pan, Y., Chen, Y., Jiao, N., & Zhang, Y. (2019).

 Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture

 using artificial upwelling. Water, 11(9), 1754. https://doi.org/10.3390/w11091754
- 58. Fasahati, P., Saffron, C. M., Woo, H. C., & Liu, J. J. (2017). Potential of brown algae for sustainable electricity production through anaerobic digestion. Energy Conversion and Management, 135, 297–307. https://doi.org/10.1016/j.enconman.2016.12.084
- 59. Fernandes, F., Barbosa, M., Oliveira, A. P., Azevedo, I. C., Sousa-Pinto, I., Valentão, P.,
 & Andrade, P. B. (2016). The pigments of kelps (Ochrophyta) as part of the flexible
 response to highly variable marine environments. Journal of Applied Phycology,
 28(6), 3689–3696. https://doi.org/10.1007/s10811-016-0883-7
 - 60. Fernandes, H., Salgado, J. M., Martins, N., Peres, H., Oliva-Teles, A., & Belo, I. (2019). Sequential bioprocessing of *Ulva rigida* to produce lignocellulolytic enzymes and to improve its nutritional value as aquaculture feed. Bioresource Technology, 281, 277–285. https://doi.org/10.1016/j.biortech.2019.02.068
 - 61. Figueira, T. A., Martins, N. T., Ayres-Ostrock, L., Plastino, E. M., Enrich-Prast, A., & Oliveira, V. P. de. (2021). The effects of phosphate on physiological responses and carbohydrate production in *Ulva fasciata* (Chlorophyta) from upwelling and non-upwelling sites. Botanica Marina, 64(1), 1–11. https://doi.org/10.1515/bot-2020-0051
 - 62. Flaherty, M., Reid, G., Chopin, T., & Latham, E. (2019). Public attitudes towards marine aquaculture in Canada: insights from the Pacific and Atlantic coasts. Aquaculture International: Journal of the European Aquaculture Society, 27(1), 9–32. https://doi.org/10.1007/s10499-018-0312-9
 - 63. Forbord, S., Matsson, S., Brodahl, G. E., Bluhm, B. A., Broch, O. J., Handå, A., Metaxas, A., Skjermo, J., Steinhovden, K. B., & Olsen, Y. (2020). Latitudinal, seasonal and depth-dependent variation in growth, chemical composition and biofouling of cultivated *Saccharina latissima* (Phaeophyceae) along the Norwegian coast. Journal of Applied Phycology, 32(4), 2215–2232. https://doi.org/10.1007/s10811-020-02038-y
 - 1110 64. Forbord, S., Skjermo, J., Arff, J., Handå, A., Reitan, K. I., Bjerregaard, R., & Lüning, K. 1111 (2012). Development of Saccharina latissima (Phaeophyceae) kelp hatcheries with 1112 year-round production of zoospores and juvenile sporophytes on culture ropes for 1113 Journal 393-399. kelp aquaculture. of Applied Phycology, 24(3), 1114 https://doi.org/10.1007/s10811-011-9784-y
 - 1115 65. Freitas, J. R. C., Jr, Salinas Morrondo, J. M., & Cremades Ugarte, J. (2016). *Saccharina* 1116 *latissima* (Laminariales, Ochrophyta) farming in an industrial IMTA system in Galicia

- 1117 (Spain). Journal of Applied Phycology, 28(1), 377-385. https://doi.org/10.1007/s10811-1118 015-0526-4 1119 66. Fröcklin, S., de la Torre-Castro, M., Lindström, L., Jiddawi, N. S., & Msuya, F. E. (2012). 1120 Seaweed mariculture as a development project in Zanzibar, East Africa: A price 1121 too high to pay? Aquaculture (Amsterdam, Netherlands), 356-357, 30-39. 1122 https://doi.org/10.1016/j.aguaculture.2012.05.039 1123 67. Ganzon-Fortes, E. T., Trono, G. C., Jr, Villanueva, R. D., Romero, J. B., & Montaño, M. 1124 N. E. (2012). 'Endong', a rare variety of the farmed carrageenophyte Eucheuma denticulatum (Burman) Collins & Hervey from the Philippines. Journal of Applied 1125 Phycology, 24(5), 1107-1111. https://doi.org/10.1007/s10811-011-9740-x 1126 1127 68. Gao, Y., Zhang, Y., Du, M., Lin, F., Jiang, W., Li, W., Li, F., Lv, X., Fang, J., & Jiang, Z. 1128 (2021). Dissolved organic carbon from cultured kelp Saccharina japonica: 1129 production, bioavailability, and bacterial degradation rates. Aquaculture 1130 Environment Interactions. https://doi.org/10.3354/aei00393 1131 69. Ge, H.X., Ni, Q., Li, J., Li, J.T., Chen, Z., & Zhao, F.-Z. (2019). Integration of white 1132 shrimp (Litopenaeus vannamei) and green seaweed (Ulva prolifera) in minimum-1133 water exchange aquaculture system. Journal of Applied Phycology, 31(2), 1425-1432. https://doi.org/10.1007/s10811-018-1601-4 1134 1135 70. Geo, L.O., Halim, & Rachmasari Ariani, W. O. (2020). Farming production analysis of 1136 seaweed and farmer's perception towards climate change effect in Southeast 1137 Sulawesi, Indonesia. Pakistan Journal of Biological Sciences: PJBS, 23(8), 1004-1009. https://doi.org/10.3923/pjbs.2020.1004.1009 1138 1139 71. Ghosh, A., Vijay Anand, K. G., & Seth, A. (2015). Life cycle impact assessment of 1140 seaweed based biostimulant production from onshore cultivated Kappaphycus 1141 alvarezii (Doty) Doty ex Silva-Is it environmentally sustainable? Algal Research, 12, 1142 513-521. https://doi.org/10.1016/j.algal.2015.10.015 1143 72. Ginigaddara, G. A. S., Lankapura, A. I. Y., Rupasena, L. P., & Bandara, A. M. K. (2018). Seaweed farming as a sustainable livelihood option for northern coastal 1144 1145 communities in Sri Lanka. Future of Food: Journal on Food, Agriculture and Society, 6(1), 57-70. 1146
- 73. Grebe, G.S., Byron, C.J., Gelais, A.S., Kotowicz, D.M., & Olson, T.K. (2019). An ecosystem approach to kelp aquaculture in the Americas and Europe. Aquaculture Reports, 15(100215), 100215. https://doi.org/10.1016/j.aqrep.2019.100215
- 1150 74. Gu, Y.G., Lin, Q., Lu, T.T., Ke, C.L., Sun, R.X., & Du, F.Y. (2013). Levels, composition 1151 profiles and sources of polycyclic aromatic hydrocarbons in surface sediments

1152 from Nan'ao Island, a representative mariculture base in South China. Marine 1153 Pollution Bulletin, 75(1-2), 310-316. https://doi.org/10.1016/j.marpolbul.2013.07.039 1154 75. Gupta, V., Trivedi, N., Simoni, S., & Reddy, C. R. K. (2018). Marine macroalgal nursery: 1155 A model for sustainable production of seedlings for large scale farming. Algal 1156 Research, 31, 463-468. https://doi.org/10.1016/j.algal.2018.02.032 1157 76. Hadley, S., Wild-Allen, K., Johnson, C., & Macleod, C. (2015). Modeling macroalgae 1158 growth and nutrient dynamics for integrated multi-trophic aquaculture. Journal of 1159 Applied Phycology, 27(2), 901-916. https://doi.org/10.1007/s10811-014-0370-y 1160 77. Hadley, S., Wild-Allen, K., Johnson, C., & Macleod, C. (2016). Quantification of the 1161 impacts of finfish aquaculture and bioremediation capacity of integrated multi-1162 trophic aquaculture using a 3D estuary model. Journal of Applied Phycology, 28(3), 1163 1875-1889. https://doi.org/10.1007/s10811-015-0714-2 1164 78. Halling, C., Aroca, G., Cifuentes, M., Buschmann, A. H., & Troell, M. (2005). 1165 Comparison of spore inoculated and vegetative propagated cultivation methods 1166 of Gracilaria chilensis in an integrated seaweed and fish cage culture. Aquaculture 1167 International: Journal of the European Aquaculture Society, 13(5), 409-422. https://doi.org/10.1007/s10499-005-6977-x 1168 1169 79. Halling, C., Wikström, S.A., Lilliesköld-Sjöö, G., Mörk, E., Lundsør, E., & Zuccarello, 1170 G.C. (2013). Introduction of Asian strains and low genetic variation in farmed seaweeds: indications for new management practices. Journal of Applied 1171 Phycology, 25(1), 89-95. https://doi.org/10.1007/s10811-012-9842-0 1172 1173 80. Han, H., Fan, S., Song, W., Li, Y., Xiao, J., Wang, Z., Zhang, X., & Ding, D. (2020). The 1174 contribution of attached Ulva prolifera on Pyropia aquaculture rafts to green tides 1175 in the Yellow Sea. Hai Yang Xue Bao [Acta Oceanologica Sinica], 39(2), 101-106. https://doi.org/10.1007/s13131-019-1452-0 1176 1177 81. Han, W., Chen, L.-P., Zhang, J.-H., Tian, X.-L., Hua, L., He, Q., Huo, Y.-Z., Yu, K.-F., Shi, 1178 D.-J., Ma, J.-H., & He, P.-M. (2013). Seasonal variation of dominant free-floating and 1179 attached Ulva species in Rudong coastal area, China. Harmful Algae, 28, 46-54. 1180 https://doi.org/10.1016/j.hal.2013.05.018 1181 82. Handå, A., Forbord, S., Wang, X., Broch, O. J., Dahle, S. W., Størseth, T. R., Reitan, K. 1182 I., Olsen, Y., & Skjermo, J. (2013). Seasonal- and depth-dependent growth of 1183 cultivated kelp (Saccharina latissima) in close proximity to salmon (Salmo salar) 1184 aquaculture in Norway. Aquaculture (Amsterdam, Netherlands), 414-415, 191-201. 1185 https://doi.org/10.1016/j.aguaculture.2013.08.006 1186 83. Hao, Y., Qu, T., Guan, C., Zhao, X., Hou, C., Tang, X., & Wang, Y. (2020). Competitive 1187 advantages of Ulva prolifera from Pyropia aquaculture rafts in Subei Shoal and its

1188 1189		implication for the green tide in the Yellow Sea. Marine Pollution Bulletin, 157(111353), 111353. https://doi.org/10.1016/j.marpolbul.2020.111353
1190 1191 1192 1193	84.	Harlina, H. (2021). Cultivation of seaweed using the basic stocking system in floating net cages on Salemo Island, Pangkep Regency, South Sulawesi, Indonesia. Aquaculture, Aquarium, Conservation & Legislation: International Journal of the Bioflux Society, 14(2), 976–980.
1194 1195 1196	85.	Hasselström, L., Thomas, J.B., Nordström, J., Cervin, G., Nylund, G.M., Pavia, H., & Gröndahl, F. (2020). Socioeconomic prospects of a seaweed bioeconomy in Sweden. Scientific Reports, 10(1), 1610. https://doi.org/10.1038/s41598-020-58389-6
1197 1198 1199 1200	86.	Hasselström, L., Visch, W., Gröndahl, F., Nylund, G. M., & Pavia, H. (2018). The impact of seaweed cultivation on ecosystem services - a case study from the west coast of Sweden. Marine Pollution Bulletin, 133, 53–64. https://doi.org/10.1016/j.marpolbul.2018.05.005
1201 1202 1203 1204	87.	Hayashi, L., Yokoya, N. S., Ostini, S., Pereira, R. T. L., Braga, E. S., & Oliveira, E. C. (2008). Nutrients removed by <i>Kappaphycus alvarezii</i> (Rhodophyta, Solieriaceae) in integrated cultivation with fishes in re-circulating water. Aquaculture (Amsterdam, Netherlands), 277(3–4), 185–191. https://doi.org/10.1016/j.aquaculture.2008.02.024
1205 1206 1207 1208	88.	He, P., Xu, S., Zhang, H., Wen, S., Dai, Y., Lin, S., & Yarish, C. (2008). Bioremediation efficiency in the removal of dissolved inorganic nutrients by the red seaweed, <i>Porphyra yezoensis</i> , cultivated in the open sea. Water Research, 42(4–5), 1281–1289. https://doi.org/10.1016/j.watres.2007.09.023
1209 1210 1211 1212	89.	Hedberg, N., von Schreeb, K., Charisiadou, S., Jiddawi, N. S., Tedengren, M., & Nordlund, L. M. (2018). Habitat preference for seaweed farming – A case study from Zanzibar, Tanzania. Ocean & Coastal Management, 154, 186–195. https://doi.org/10.1016/j.ocecoaman.2018.01.016
1213 1214 1215 1216	90.	Heery, E. C., Lian, K. Y., Loke, L. H. L., Tan, H. T. W., & Todd, P. A. (2020). Evaluating seaweed farming as an eco-engineering strategy for 'blue' shoreline infrastructure. Ecological Engineering, 152(105857), 105857. https://doi.org/10.1016/j.ecoleng.2020.105857
1217 1218 1219	91.	Hehre, E. J., & Meeuwig, J. J. (2015). Differential response of fish assemblages to coral reef-based seaweed farming. PloS One, 10(3), e0118838. https://doi.org/10.1371/journal.pone.0118838
1220 1221 1222	92.	Hehre, E. J., & Meeuwig, J. J. (2016). A global analysis of the relationship between farmed seaweed production and herbivorous fish catch. PloS One, 11(2), e0148250. https://doi.org/10.1371/journal.pone.0148250

1223 93. Hernández, I., Martínez-Aragón, J. F., Tovar, A., Pérez-Lloréns, J. L., & Vergara, J. J. 1224 (2002). Biofiltering efficiency in removal of dissolved nutrients by three species of 1225 estuarine macroalgae cultivated with seabass (Dicentrarchus labrax) with seawater. 1226 Ammonium. Journal of **Applied** Phycology, 14(5), 375-384. https://doi.org/10.1023/a:1022178417203 1227 1228 94. Hernández, I., Fernández-Engo, M.A., Pérez-Lloréns, J.L., & Vergara, J.J. (2005). 1229 Integrated outdoor culture of two estuarine macroalgae as biofilters for dissolved 1230 nutrients from Sparus auratus waste waters. Journal of Applied Phycology, 17(6), 557-567. https://doi.org/10.1007/s10811-005-9006-6 1231 1232 95. Hill, N. A. O., Rowcliffe, J. M., Koldewey, H. J., & Milner-Gulland, E. J. (2012). The 1233 interaction between seaweed farming as an alternative occupation and fisher 1234 numbers in the central Philippines. Conservation Biology: The Journal of the 1235 Society for Conservation Biology, 26(2), 324-334. https://doi.org/10.1111/j.1523-1236 1739.2011.01796.x 1237 96. Holdt, S. L., & Edwards, M. D. (2014). Cost-effective IMTA: a comparison of the 1238 production efficiencies of mussels and seaweed. Journal of Applied Phycology, 1239 26(2), 933-945. https://doi.org/10.1007/s10811-014-0273-v 1240 97. Hossain, M. S., Sharifuzzaman, S. M., Nobi, M. N., Chowdhury, M. S. N., Sarker, S., 1241 Alamgir, M., Uddin, S. A., Chowdhury, S. R., Rahman, M. M., Rahman, M. S., Sobhan, F., 1242 & Chowdhury, S. (2021). Seaweeds farming for sustainable development goals and 1243 economy in Bangladesh. Marine Policy, 128(104469), 1244 https://doi.org/10.1016/j.marpol.2021.104469 1245 98. Hu, X., Wen, G., Cao, Y., Gong, Y., Li, Z., He, Z., & Yang, Y. (2017). Metabolic and 1246 phylogenetic profiles of microbial communities from a mariculture base on the 1247 Chinese Guangdong coast. Fisheries Science: FS, 83(3), 465-477. https://doi.org/10.1007/s12562-017-1073-5 1248 1249 99. Hughes, A. D., Black, K. D., Campbell, I., Davidson, K., Kelly, M. S., & Stanley, M. S. 1250 (2012). Does seaweed offer a solution for bioenergy with biological carbon capture 1251 and storage? Greenhouse Gases Science and Technology, 2(6), 402-407. https://doi.org/10.1002/ghg.1319 1252 1253 100. Huo, Y., Han, H., Hua, L., Wei, Z., Yu, K., Shi, H., Kim, J. K., Yarish, C., & He, P. 1254 (2016). Tracing the origin of green macroalgal blooms based on the large scale 1255 spatio-temporal distribution of Ulva microscopic propagules and settled mature 1256 Ulva vegetative thalli in coastal regions of the Yellow Sea, China. Harmful Algae, 59, 1257 91-99. https://doi.org/10.1016/j.hal.2016.09.005

1258 101. Huo, Y., Han, H., Shi, H., Wu, H., Zhang, J., Yu, K., Xu, R., Liu, C., Zhang, Z., Liu, K., He, 1259 P., & Ding, D. (2015). Changes to the biomass and species composition of *Ulva* sp. 1260 on Porphyra aquaculture rafts, along the coastal radial sandbank of the Southern 1261 Yellow Sea. Marine Pollution Bulletin. 93(1-2), 210-216. https://doi.org/10.1016/j.marpolbul.2015.01.014 1262 1263 102. Hurtado, A. Q., Critchley, A. T., Trespoey, A., & Lhonneur, G. B. (2006). 1264 Occurrence of Polysiphonia epiphytes in Kappaphycus farms at calaguas is., 1265 camarines Norte, Phillippines. Journal of Applied Phycology, 18(3-5), 301-306. 1266 https://doi.org/10.1007/s10811-006-9032-z 1267 103 Hussin, R., Yasir, S., & Kunjuraman, V. (2015). Potential of seaweed cultivation 1268 as a community-based rural tourism product: a stakeholders' perspectives. 1269 Advances in Environmental Biology, 154+. 1270 104. Israel, A., Gavrieli, J., Glazer, A., & Friedlander, M. (2005). Utilization of flue gas from a power plant for tank cultivation of the red seaweed Gracilaria cornea. 1271 1272 Aquaculture 249(1-4), 311-316. (Amsterdam, Netherlands), https://doi.org/10.1016/j.aguaculture.2005.04.058 1273 1274 105. Jacob, C.T., & Reddy, C.A. (2015). Implementation of the Access and Benefit 1275 Sharing provisions of the Biological Diversity act, 2002: A case study on red 1276 seaweed (Kappaphycus alvarezii). Asian Biotechnology and Development Review, 1277 17(3), 39-51. 1278 106. Jiang, Z., Fang, J., Mao, Y., Han, T., & Wang, G. (2013). Influence of seaweed 1279 aquaculture on marine inorganic carbon dynamics and sea-air CO2 flux: Seaweed 1280 aquaculture and inorganic carbon dynamics. Journal of the World Aquaculture Society, 44(1), 133-140. https://doi.org/10.1111/jwas.12000 1281 1282 107. Jiang, Z., Liu, J., Li, S., Chen, Y., Du, P., Zhu, Y., Liao, Y., Chen, Q., Shou, L., Yan, 1283 X., Zeng, J., & Chen, J. (2020). Kelp cultivation effectively improves water quality 1284 and regulates phytoplankton community in a turbid, highly eutrophic bay. The 1285 of Total Environment, 707(135561), 135561. Science the 1286 https://doi.org/10.1016/j.scitotenv.2019.135561 1287 108. Jonouchi, K., Yokoyama, S., Imou, K., & Kaizu, Y. (2006). Utilization of marine 1288 biomass for bioenergy: Fuel cell power generation driven by biogas derived from seaweed. International Energy Journal, 7(3). 1289 109. 1290 Jung, K. A., Lim, S.-R., Kim, Y., & Park, J. M. (2017). Opportunity and challenge 1291 of seaweed bioethanol based on life cycle CO2 assessment. Environmental 1292 Progress & Sustainable Energy, 36(1), 200-207. https://doi.org/10.1002/ep.12446

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

1293 110. Kadowaki, S., & Kitadai, Y. (2017). Advantages of environmentally sound poly-eco-1294 aquaculture in fish farms. In Application of Recirculating Aquaculture Systems in 1295 Japan (pp. 267-278). Springer Japan. 1296 111. Kambey, C. S. B., Campbell, I., Sondak, C. F. A., Nor, A. R. M., Lim, P. E., & Cottier-1297 Cook, E. J. (2020). An analysis of the current status and future of biosecurity 1298 frameworks for the Indonesian seaweed industry. Journal of Applied Phycology, 32(4), 2147-2160. https://doi.org/10.1007/s10811-019-02020-3 1299 1300 112. Kambey, C. S. B., Sondak, C. F. A., & Chung, I.-K. (2020). Potential growth and 1301 nutrient removal of Kappaphycus alvarezii in a fish floating-net cage system in 1302 Sekotong Bay, Lombok, Indonesia. Journal of the World Aquaculture Society, 51(4), 944-959. https://doi.org/10.1111/jwas.12683 1303 1304 113. Kang, Y. H., Kim, S., Choi, S. K., Lee, H. J., Chung, I. K., & Park, S. R. (2021). A 1305 comparison of the bioremediation potential of five seaweed species in an 1306 integrated fish-seaweed aquaculture system: implication for a multi-species 1307 13(1), seaweed culture. Reviews in Aquaculture, 353-364. https://doi.org/10.1111/rag.12478 1308 1309 114. Kasan, N. A., Zainoddin, J., Mohd Lazim, M. S., Saberi, M., Huda Moham, N. A., & 1310 Ikhwanuddi, M. (2018). Carbon sink profile in cultured seaweed, Gracilaria changii for 1311 mitigation of global warming phenomenon. Journal of Environmental Science and 1312 Technology, 11(4), 190-198. https://doi.org/10.3923/jest.2018.190.198 1313 115. Kasim, M., Mustafa, A., Ishak, E., Ibrahim, M. N., & Irawati, N. (2019). Environmental 1314 of Kappaphycus alvarezii cultivation area following 1315 eutrophication. In Aquaculture, Aquarium, Conservation & Legislation Bioflux, 12 (4), 1316 pp. 1102-1113). 1317 116. Keesing, J. K., Liu, D., Fearns, P., & Garcia, R. (2011). Inter- and intra-annual patterns 1318 of Ulva prolifera green tides in the Yellow Sea during 2007-2009, their origin and 1319 relationship to the expansion of coastal seaweed aquaculture in China. Marine 1320 Pollution Bulletin, 62(6), 1169-1182. https://doi.org/10.1016/j.marpolbul.2011.03.040 1321 117. Keesing, J. K., Liu, D., Shi, Y., & Wang, Y. (2016). Abiotic factors influencing biomass 1322 accumulation of green tide causing Ulva spp. on Pyropia culture rafts in the Yellow 88-97. 1323 Sea, China. Marine Pollution Bulletin, 105(1), 1324 https://doi.org/10.1016/j.marpolbul.2016.02.051 1325 118. Keng, F. S.L., Phang, S.M., Abd Rahman, N., Elvidge, E.C.L., Malin, G., & Sturges, W. T. 1326 (2020). The emission of volatile halocarbons by seaweeds and their response 1327 towards environmental changes. Journal of Applied Phycology, 32(2), 1377-1394.

2021 | August Method Protocol 53

https://doi.org/10.1007/s10811-019-02026-x

1329	119. Kerrison, P. D., Stanley, M. S., & Hughes, A. D. (2018). Textile substrate seeding of
1330	Saccharina latissima sporophytes using a binder: An effective method for the
1331	aquaculture of kelp. Algal Research, 33, 352–357.
1332	https://doi.org/10.1016/j.algal.2018.06.005
1333	120. Kersen, P., Paalme, T., Pajusalu, L., & Martin, G. (2017). Biotechnological
1334	applications of the red alga Furcellaria lumbricalis and its cultivation potential in the
1335	Baltic Sea. Botanica Marina, 60(2). https://doi.org/10.1515/bot-2016-0062
1336	121. Kim, J. B., Lee, WC., Kim, H. C., & Hong, S. (2020). Photosynthetic characteristics
1337	of <i>Pyropia yezoensis</i> (Ueda) Hwang & Choi measured using Diving-PAM in the Jindo-
1338	Haenam region on the southwestern coast of the Korean Peninsula. Journal of
1339	Applied Phycology, 32(4), 2631–2640. https://doi.org/10.1007/s10811-019-01997-1
1340	122.Kim, J.K., Kraemer, G.P., & Yarish, C. (2015). Use of sugar kelp aquaculture in Long
1341	Island Sound and the Bronx River Estuary for nutrient extraction. Marine Ecology
1342	Progress Series, 531, 155–166. https://doi.org/10.3354/meps11331
1343	123.Kim, J.K., Kraemer, G.P., & Yarish, C. (2014). Field scale evaluation of seaweed
1344	aquaculture as a nutrient bioextraction strategy in Long Island Sound and the Bronx
1345	River Estuary. Aquaculture (Amsterdam, Netherlands), 433, 148–156.
1346	https://doi.org/10.1016/j.aquaculture.2014.05.034
1347	124.Korzen, L., Abelson, A., & Israel, A. (2016). Growth, protein and carbohydrate
1348	contents in <i>Ulva rigida</i> and <i>Gracilaria bursa-pastoris</i> integrated with an offshore fish
1349	farm. Journal of Applied Phycology, 28(3), 1835–1845. https://doi.org/10.1007/s10811-
1350	<u>015-0691-5</u>
1351	125. Korzen, L., Peled, Y., Shamir, S. Z., Shechter, M., Gedanken, A., Abelson, A., & Israel,
1352	A. (2015). An economic analysis of bioethanol production from the marine
1353	macroalga <i>Ulva</i> (Chlorophyta). Technology, 03(02n03), 114-118.
1354	https://doi.org/10.1142/s2339547815400105
1355	126.Kraan, S., & Barrington, K. A. (2005). Commercial farming of <i>Asparagopsis armata</i>
1356	(Bonnemaisoniceae, Rhodophyta) in Ireland, maintenance of an introduced species?
1357	Journal of Applied Phycology, 17(2), 103-110. https://doi.org/10.1007/s10811-005-
1358	<u>2799-5</u>
1359	127.Krishnan, P., Abhilash, K. R., Sreeraj, C. R., Samuel, V. D., Purvaja, R., Anand, A.,
1360	Mahapatra, M., Sankar, R., Raghuraman, R., & Ramesh, R. (2021). Balancing livelihood
1361	enhancement and ecosystem conservation in seaweed farmed areas: A case study
1362	from Gulf of Mannar Biosphere Reserve, India. Ocean & Coastal Management,
1363	207(105590), 105590. https://doi.org/10.1016/j.ocecoaman.2021.105590
	(

1365 1366 1367	level consequences of a small-scale artisanal kelp fishery within the context of climate-change. Ecological Applications: A Publication of the Ecological Society of America, 27(3), 799–813. https://doi.org/10.1002/eap.1484
1368 1369 1370	129.Kübler, J. E., Dudgeon, S. R., & Bush, D. (2021). Climate change challenges and opportunities for seaweed aquaculture in California, the United States. Journal of the World Aquaculture Society, 52(5), 1069–1080. https://doi.org/10.1111/jwas.12794
1371 1372 1373 1374	130. Kuhnen, V. V., Costa, L. de G., Raiol, K. de L., Souza, O. M., & Sanches, E. G. (2019). Mariculture impacts on the benthonic icthyofauna of Itaguá bay, Ubatuba, southeast Brazil. Boletim Do Instituto de Pesca São Paulo, 45(4), e500. https://doi.org/10.20950/1678-2305.2019.45.4.500
1375 1376 1377	131. Kunjuraman, V., Hossin, A., Hussin, R. (2019). Women in Malaysian seaweed industry: Motivations and impacts. Kajian Malaysia, 37(2), 49–74. https://doi.org/10.21315/km2019.37.2.3
1378 1379 1380 1381	132.Lampe, M., Munsi, H., & Luran, N. F. (2020). Development phases and socio-cultural contexts of the reef-based fishing economy of the Sembilan Islands community, South Sulawesi, Indonesia. Aquaculture, Aquarium, Conservation & Legislation Bioflux, 13(2), 459-469
1382 1383 1384 1385	133.Lamprianidou, F., Telfer, T., & Ross, L. G. (2015). A model for optimization of the productivity and bioremediation efficiency of marine integrated multitrophic aquaculture. Estuarine, Coastal and Shelf Science, 164, 253–264. https://doi.org/10.1016/j.ecss.2015.07.045
1386 1387 1388 1389	134.Larson, S., Stoeckl, N., Fachry, M. E., Dalvi Mustafa, M., Lapong, I., Purnomo, A. H., Rimmer, M. A., & Paul, N. A. (2021). Women's well-being and household benefits from seaweed farming in Indonesia. Aquaculture (Amsterdam, Netherlands), 530(735711), 735711. https://doi.org/10.1016/j.aquaculture.2020.735711
1390 1391 1392 1393	135. Lehahn, Y., Ingle, K. N., & Golberg, A. (2016). Global potential of offshore and shallow waters macroalgal biorefineries to provide for food, chemicals and energy: feasibility and sustainability. Algal Research, 17, 150–160. https://doi.org/10.1016/j.algal.2016.03.031
1394 1395 1396 1397	136.Lei, Y., Feng, P., Du, X., & Jiang, S. (2021). Diatom assemblages from sediment traps in response to large seaweed <i>Gracilaria</i> cultivation off Nan'ao island, South China. Marine Pollution Bulletin, 165(112157), 112157. https://doi.org/10.1016/j.marpolbul.2021.112157
1398 1399	137.Li, Q., Shan, T., Wang, X., Su, L., & Pang, S. (2020). Evaluation of the genetic relationship between the farmed populations on a typical kelp farm and the

1400 1401 1402	adjacent subtidal spontaneous population of <i>Undaria pinnatifida</i> (Phaeophyceae, Laminariales) in China. Journal of Applied Phycology, 32(1), 653–659. https://doi.org/10.1007/s10811-019-01917-3
1403 1404 1405 1406	138. Limi, M. A., Sara, L., La Ola, T., Yunus, L., Suriana, T. S. A. A., Batoa, H., Hamzah, A., Fyka, S. A., & Prapitasari, M. (2018). The production and income from seaweed farming after the sedimentation in Kendari Bay. Aquaculture, Aquarium, Conservation & Legislation Bioflux, 11(6), 1927-1936
1407 1408 1409 1410	139.Liu, D., Keesing, J. K., Dong, Z., Zhen, Y., Di, B., Shi, Y., Fearns, P., & Shi, P. (2010). Recurrence of the world's largest green-tide in 2009 in Yellow Sea, China: <i>Porphyra yezoensis</i> aquaculture rafts confirmed as nursery for macroalgal blooms. Marine Pollution Bulletin, 60(9), 1423–1432. https://doi.org/10.1016/j.marpolbul.2010.05.015
1411 1412 1413 1414	140. Liu, D., Keesing, J. K., He, P., Wang, Z., Shi, Y., & Wang, Y. (2013). The world's largest macroalgal bloom in the Yellow Sea, China: Formation and implications. Estuarine, Coastal and Shelf Science, 129, 2–10. https://doi.org/10.1016/j.ecss.2013.05.021
1415 1416 1417	141. Liu, D., Keesing, J. K., Xing, Q., & Shi, P. (2009). World's largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Marine Pollution Bulletin, 58(6), 888–895. https://doi.org/10.1016/j.marpolbul.2009.01.013
1418 1419 1420 1421	142.Liu, J., Xia, J., Zhuang, M., Zhang, J., Sun, Y., Tong, Y., Zhao, S., & He, P. (2021). Golden seaweed tides accumulated in <i>Pyropia</i> aquaculture areas are becoming a normal phenomenon in the Yellow Sea of China. The Science of the Total Environment, 774(145726), 145726. https://doi.org/10.1016/j.scitotenv.2021.145726
1422 1423 1424 1425	143.Liu, Z., Luo, H., Wu, Y., Ren, H., & Yang, Y. (2019). Large-scale cultivation of <i>Gracilaria lemaneiformis</i> in Nan'ao Island of Shantou and its effects on the aquatic environment and phytoplankton. Zhongguo Shui Chan Ke Xue [Journal of Fishery Sciences of China], 26(1), 99. https://doi.org/10.3724/sp.j.1118.2019.18373
1426 1427 1428 1429	144. Macchiavello, J., & Bulboa, C. (2014). Nutrient uptake efficiency of <i>Gracilaria chilensis</i> and <i>Ulva lactuca</i> in an IMTA system with the red abalone Haliotis rufescens. Latin American Journal of Aquatic Research, 42(3), 523–533. https://doi.org/10.3856/vol42-issue3-fulltext-12
1430 1431 1432 1433	145. Magnusson, M., Mata, L., de Nys, R., & Paul, N. A. (2014). Biomass, lipid and fatty acid production in large-scale cultures of the marine macroalga <i>Derbesia tenuissima</i> (Chlorophyta). Marine Biotechnology (New York, N.Y.), 16(4), 456–464. https://doi.org/10.1007/s10126-014-9564-1
1434 1435	146.Mahmood, T., Fang, J., Jiang, Z., & Zhang, J. (2016). Carbon and nitrogen flow, and trophic relationships, among the cultured species in an integrated multi-trophic

1436	aquaculture (IMTA) bay. Aquaculture Environment Interactions, 8, 207–219.
1437	https://doi.org/10.3354/aei00152
1438	147. Mahmood, Tariq, Fang, J., Jiang, Z., Ying, W., & Zhang, J. (2017). Seasonal distribution,
1439	sources and sink of dissolved organic carbon in integrated aquaculture system in
1440	coastal waters. Aquaculture International: Journal of the European Aquaculture
1441	Society, 25(1), 71–85. <u>https://doi.org/10.1007/s10499-016-0014-0</u>
1442	148.Marinho-Soriano, Moreira, & Carneiro. (2006). Some aspects of the growth of
1443	Gracilaria birdiae (Gracilariales, Rhodophyta) in an estuary in northeast Brazil.
1444	Aquaculture International: Journal of the European Aquaculture Society, 14(4), 327–
1445	336. https://doi.org/10.1007/s10499-005-9032-z
1446	149.Martínez-Aragón, J. F., Hernández, I., Pérez-Lloréns, J. L., Vázquez, R., & Vergara, J.
1447	J. (2002). Journal of Applied Phycology, 14(5), 365–374.
1448	https://doi.org/10.1023/a:1022134701273
1449	150. Mata, L., Gaspar, H., & Santos, R. (2012). Carbon/nutrient balance in relation
1450	to biomass production and halogenated compound content in the red alga
1451	Asparagopsis taxiformis (Bonnemaisoniaceae) Journal of Phycology, 48(1), 248–253.
1452	https://doi.org/10.1111/j.1529-8817.2011.01083.x
1453	151. Mata, L., Schuenhoff, A., & Santos, R. (2010). A direct comparison of the
1454	performance of the seaweed biofilters, Asparagopsis armata and Ulva rigida.
1455	Journal of Applied Phycology, 22(5), 639-644. https://doi.org/10.1007/s10811-010-
1456	<u>9504-z</u>
1457	152.Mateo, J. P., Campbell, I., Cottier-Cook, E. J., Luhan, M. R. J., Ferriols, V. M. E. N., &
1458	Hurtado, A. Q. (2020). Analysis of biosecurity-related policies governing the
1459	seaweed industry of the Philippines. Journal of Applied Phycology, 32(3), 2009-
1460	2022. https://doi.org/10.1007/s10811-020-02083-7
1461	153. Matsson, S., Christie, H., & Fieler, R. (2019). Variation in biomass and biofouling of
1462	kelp, Saccharina latissima, cultivated in the Arctic, Norway. Aquaculture
1463	(Amsterdam, Netherlands), 506, 445-452.
1464	https://doi.org/10.1016/j.aquaculture.2019.03.068
1465	154.Mhatre, A., Navale, M., Trivedi, N., Pandit, R., & Lali, A. M. (2018). Pilot scale flat panel
1466	photobioreactor system for mass production of Ulva lactuca (Chlorophyta).
1467	Bioresource Technology, 249, 582-591.
1468	https://doi.org/10.1016/j.biortech.2017.10.058
1469	155. Miao, X., Xiao, J., Xu, Q., Fan, S., Wang, Z., Wang, X., & Zhang, X. (2020). Distribution
1470	and species diversity of the floating green macroalgae and micro-propagules in the

1471	Subei Shoal, southwestern Yellow Sea. PeerJ, 8(e10538), e10538.
1472	https://doi.org/10.7717/peerj.10538
1473	156. Michler-Cieluch, T., & Kodeih, S. (2008). Mussel and seaweed cultivation in offshore
1474	wind farms: An opinion survey. Coastal Management: An International Journal of
1475	Marine Environment, Resources, Law, and Society, 36(4), 392–411.
1476	https://doi.org/10.1080/08920750802273185
1477	157. Mirera, D. O., Kimathi, A., Ngarari, M. M., Magondu, E. W., Wainaina, M., & Ototo, A.
1478	(2020). Societal and environmental impacts of seaweed farming in relation to rural
1479	development: The case of Kibuyuni village, south coast, Kenya. Ocean & Coastal
1480	Management, 194(105253), 105253.
1481	https://doi.org/10.1016/j.ocecoaman.2020.105253
1482	158. Mithoo-Singh, P. K., Keng, F. SL., Phang, SM., Leedham Elvidge, E. C., Sturges, W.
1483	T., Malin, G., & Abd Rahman, N. (2017). Halocarbon emissions by selected tropical
1484	seaweeds: species-specific and compound-specific responses under changing pH.
1485	PeerJ, 5(e2918) https://doi.org/10.7717/peerj.2918
1486	159. Mongin, M., Baird, M. E., Hadley, S., & Lenton, A. (2016). Optimising reef-scale CO ₂
1487	removal by seaweed to buffer ocean acidification. Environmental Research Letters,
1488	11(3), O34O23. https://doi.org/10.1088/1748-9326/11/3/034O23
1489	160. Monteiro, J. P., Melo, T., Skjermo, J., Forbord, S., Broch, O. J., Domingues, P.,
1490	Calado, R., & Domingues, M. R. (2021). Effect of harvesting month and proximity to
1491	fish farm sea cages on the lipid profile of cultivated Saccharina latissima. Algal
1492	Research, 54(102201), 102201. https://doi.org/10.1016/j.algal.2021.102201
1493	161. Mooney, K. M., Beatty, G. E., Elsäßer, B., Follis, E. S., Kregting, L., O'Connor, N. E.,
1494	Riddell, G. E., & Provan, J. (2018). Hierarchical structuring of genetic variation at
1495	differing geographic scales in the cultivated sugar kelp Saccharina latissima. Marine
1496	Environmental Research, 142, 108-115.
1497	https://doi.org/10.1016/j.marenvres.2018.09.029
1498	162. Moreira-Saporiti, A., Hoeijmakers, D., Msuya, F. E., Reuter, H., & Teichberg, M. (2021).
1499	Seaweed farming pressure affects seagrass and benthic macroalgae dynamics in
1500	Chwaka Bay (Zanzibar, Tanzania). Regional Environmental Change, 21(1).
1501	https://doi.org/10.1007/s10113-020-01742-2
1502	163. Msuya, F. E., & Porter, M. (2014). Impact of environmental changes on farmed
1503	seaweed and farmers: the case of Songo Songo Island, Tanzania. Journal of Applied
1504	Phycology, 26(5), 2135-2141. https://doi.org/10.1007/s10811-014-0243-4

1505 1506 1507	164.Mulyani, S., Tuwo, A., Syamsuddin, R., & Jompa, J. (2018). Effect of seaweed Kappaphycus alvarezii aquaculture on growth and survival of coral Acropora muricata. Aquaculture, Aquarium, Conservation & Legislation, 11(6), 1792-1798.
1508 1509	165. Mulyani, S., Tuwo, A., Syamsuddin, R., Jompa, J., & Cahyono, I. (2020). Effect of Kappaphycus alvarezii mariculture on the recruitment of scleractinian corals.
1510 1511 1512 1513	166. Muñoz, J., Freile-Pelegrín, Y., & Robledo, D. (2004). Mariculture of <i>Kappaphycus alvarezii</i> (Rhodophyta, Solieriaceae) color strains in tropical waters of Yucatán, México. Aquaculture (Amsterdam, Netherlands), 239(1-4), 161-177. https://doi.org/10.1016/j.aquaculture.2004.05.043
1514 1515 1516 1517 1518	167. Nagler, P.L., Glenn, E.P., Nelson, S.G., & Napolean, S. (2003). Effects of fertilization treatment and stocking density on the growth and production of the economic seaweed <i>Gracilaria parvispora</i> (Rhodophyta) in cage culture at Molokai, Hawaii. Aquaculture (Amsterdam, Netherlands), 219(1-4), 379-391. https://doi.org/10.1016/s0044-8486(02)00529-x
1519 1520 1521 1522	168. Namudu, M. T., & Pickering, T. D. (2006). Rapid survey technique using Socio-economic indicators to assess the suitability of pacific island rural communities for <i>Kappaphycus</i> seaweed farming development. Journal of Applied Phycology, 18(3–5), 241–249. https://doi.org/10.1007/s10811-006-9023-0
1523 1524 1525 1526 1527	169. Namukose, M., Msuya, F. E., Ferse, S. C. A., Slater, M. J., & Kunzmann, A. (2016). Growth performance of the sea cucumber <i>Holothuria scabra</i> and the seaweed <i>Eucheuma denticulatum</i> : integrated mariculture and effects on sediment organic characteristics. Aquaculture Environment Interactions, 8, 179–189. https://doi.org/10.3354/aei00172
1528 1529 1530	170. Narayanakumar, R., & Krishnan, M. (2011). Seaweed mariculture: an economically viable alternate livelihood option (ALO) for fishers. Indian Journal of Fisheries, 58(1), 79–84.
1531 1532 1533	171. Narayanakumar, R., & Krishnan, M. (2013). Socio-economic assessment of seaweed farmers in Tamil Nadu - A case study in Ramanathapuram District. Indian Journal of Fisheries, 60(4), 51–57.
1534 1535 1536 1537 1538	172. Navarrete, I. A., Kim, D. Y., Wilcox, C., Reed, D. C., Ginsburg, D. W., Dutton, J. M., Heidelberg, J., Raut, Y., & Wilcox, B. H. (2021). Effects of depth-cycling on nutrient uptake and biomass production in the giant kelp <i>Macrocystis pyrifera</i> . Renewable and Sustainable Energy Reviews, 141(110747), 110747. https://doi.org/10.1016/j.rser.2021.110747
1539 1540	173. Ndobe, S., Yasir, I., Salanggon, AI. M., Wahyudi, D., Adel, Y. S., & Moore, A. M. (n.d.). Eucheumatoid seaweed farming under global change -Tomini Bay seaweed trial

1541 1542	indicates <i>Eucheuma denticulatum</i> (spinosum) could contribute to climate adaptation 1. Com.Ro. Retrieved January 26, 2022, from
1543 174 1544 1545	Neori, A. (2008). Essential role of seaweed cultivation in integrated multi-trophic aquaculture farms for global expansion of mariculture: an analysis. Journal of Applied Phycology, 20(5), 567–570. https://doi.org/10.1007/s10811-007-9206-3
1546 175 1547 1548 1549 1550	Neori, A., Bronfman, Y., van Rijn, J., Guttman, L., Krupnik, N., Shpigel, M., Samocha, T. M., Davis, D. A., Qiu, X., Abelin, P., & Israel, Á. (2020). The suitability of <i>Ulva fasciata, Ulva compressa</i> , and <i>Hypnea musciformis</i> for production in an outdoor spray cultivation system, with respect to biomass yield and protein content. Journal of Applied Phycology, 32(5), 3183–3197. https://doi.org/10.1007/s10811-020-02130-3
1551 176 1552 1553 1554	Nogueira, M. C. F., & Henriques, M. B. (2020). Large-scale versus family-sized system production: economic feasibility of cultivating <i>Kappaphycus alvarezii</i> along the southeastern coast of Brazil. Journal of Applied Phycology, 32(3), 1893–1905. https://doi.org/10.1007/s10811-020-02107-2
1555 177 1556 1557	Nor, A. M., Gray, T. S., Caldwell, G. S., & Stead, S. M. (2020). A value chain analysis of Malaysia's seaweed industry. Journal of Applied Phycology, 32(4), 2161–2171. https://doi.org/10.1007/s10811-019-02004-3
1558 178 1559 1560	Nuryadi, A. M., La, S., Rianda, L., & Bafadal, A. (2019). A model for developing seaweed agribusiness in South Konawe, Southeast Sulawesi, Indonesia. Aquaculture, Aquarium, Conservation & Legislation Bioflux, 12(5), 1718-1725
1561 179 1562 1563 1564	Nwoba, E. G., Moheimani, N. R., Ubi, B. E., Ogbonna, J. C., Vadiveloo, A., Pluske, J. R., & Huisman, J. M. (2017). Macroalgae culture to treat anaerobic digestion piggery effluent (ADPE). Bioresource Technology, 227, 15–23. https://doi.org/10.1016/j.biortech.2016.12.044
1565 180 1566 1567 1568 1569	Oyarzo, S., Ávila, M., Alvear, P., Remonsellez, J. P., Contreras-Porcia, L., & Bulboa, C. (2021). Secondary attachment disc of edible seaweed <i>Chondracanthus chamissoi</i> (Rhodophyta, Gigartinales): Establishment of permanent thalli stock. Aquaculture (Amsterdam, Netherlands), 530(735954), 735954. https://doi.org/10.1016/j.aquaculture.2020.735954
1570 181. 1571 1572 1573	Padhi, S., Swain, P. K., Behura, S. K., Baidya, S., Behera, S. K., & Panigrahy, M. R. (2011). Cultivation of <i>Gracilaria verrucosa</i> (Huds) Papenfuss in Chilika Lake for livelihood generation in coastal areas of Orissa State. Journal of Applied Phycology, 23(2), 151–155. https://doi.org/10.1007/s10811-010-9592-9
1574 182 1575 1576	Pang, S. J., Xiao, T., & Bao, Y. (2006). Dynamic changes of total bacteria and Vibrio in an integrated seaweed-abalone culture system. Aquaculture (Amsterdam, Netherlands), 252(2-4), 289-297. https://doi.org/10.1016/j.aquaculture.2005.06.050

1577 1578 1579 1580	183. Parakkasi, P., Rani, C., Syam, R., Zainuddin, & Achmad, M. (2020). Growth response and quality of seaweed <i>Kappaphycus alvarezii</i> cultivated in various coastal ecosystems in the waters of West Sulawesi, Indonesia. Aquaculture, Aquarium, Conservation & Legislation Bioflux, 13(2), 627–639.
1581 1582 1583 1584	184. Parakkasi, P., Syamsuddin, R., Haris, A., & Rani, C. (2020). Shading effect of seaweed farming on the growth and health of the corals <i>Porites cylindrica</i> and <i>Acropora formosa</i> . Aquaculture, Aquarium, Conservation & Legislation Bioflux, 13(3), 1650-1664.
1585 1586 1587 1588	185. Parenrengi, A., Dworjanyn, S., Syah, R., Pongmasak, P. R., & Fahrur, M. (2020). Strain selection for growth enhancement of wild and cultivated eucheumatoid seaweed species in Indonesia. Sains Malaysiana, 49(10), 2453–2464. https://doi.org/10.17576/jsm-2020-4910-11
1589 1590 1591 1592	186. Peña-Rodríguez, A., Magallón-Barajas, F. J., Cruz-Suárez, L. E., Elizondo-González, R., & Moll, B. (2017). Effects of stocking density on the performance of brown shrimp Farfantepenaeus californiensis co-cultured with the green seaweed <i>Ulva clathrata</i> . Aquaculture Research, 48(6), 2803–2811. https://doi.org/10.1111/are.13114
1593 1594 1595 1596	187. Pereira, S. A., Kimpara, J. M., & Valenti, W. C. (2021). Sustainability of the seaweed Hypnea pseudomusciformis farming in the tropical Southwestern Atlantic. Ecological Indicators, 121(107101), 107101. https://doi.org/10.1016/j.ecolind.2020.107101
1598 1599 1600	188. Periyasamy, C., Anantharaman, P., & Balasubramanian, T. (2014). Social upliftment of coastal fisher women through seaweed (<i>Kappaphycus alvarezii</i> (Doty) Doty) farming in Tamil Nadu, India. Journal of Applied Phycology, 26(2), 775–781. https://doi.org/10.1007/s10811-013-0228-8 189. Peteiro, C. F. (2012). Observations on fish grazing of the cultured kelps <i>Undaria</i>
1602 1603	pinnatifida and Saccharina latissima (Phaeophyceae, Laminariales) in Spanish Atlantic waters. Aquaculture, Aquarium, Conservation & Legislation Bioflux, 5(4), 189–196.
1604 1605 1606 1607	190. Peteiro, C., & Freire, Ó. (2011). Effect of water motion on the cultivation of the commercial seaweed <i>Undaria pinnatifida</i> in a coastal bay of Galicia, Northwest Spain. Aquaculture (Amsterdam, Netherlands), 314(1–4), 269–276. https://doi.org/10.1016/j.aquaculture.2011.02.009
1608 1609 1610 1611	191. Peteiro, C., & Freire, Ó. (2013). Epiphytism on blades of the edible kelps <i>Undaria</i> pinnatifida and <i>Saccharina latissima</i> farmed under different abiotic conditions: Epiphytism on kelps farmed. Journal of the World Aquaculture Society, 44(5), 706–715. https://doi.org/10.1111/jwas.12065

1012	192. Phang, S.M., Keng, F. S.L., Singh, P.K. M., Lim, Y.K., Abd Rahman, N., Leedham, E. C.,					
1613	Robinson, A.D., R.P. Harris, N., A. Pyle, J., & Turges, W.T. (2015). Can seaweed farming					
1614	in the tropics contribute to climate change through emission of short-lived					
1615	halocarbons? Malaysian Journal of Science Series B, 34(1), 8–19.					
1616	https://doi.org/10.22452/mjs.vol34no1.2					
1617	193. Phang, S.M., Yeong, H.Y., Hussin, H., Lim, P.E., You, H.C., & Juan, J.C. (2017). Techno-					
1618	economics of seaweed farming along the coasts of Kelantan, east coast peninsular					
1619	Malaysia. Malaysian Journal of Science Series B, 36(2), 84-102.					
1620	https://doi.org/10.22452/mjs.vol36no2.4					
1621	194.Philippsen, A., Wild, P., & Rowe, A. (2014). Energy input, carbon intensity and cost for					
1622	ethanol produced from farmed seaweed. Renewable and Sustainable Energy					
1623	Reviews, 38, 609-623. https://doi.org/10.1016/j.rser.2014.06.010					
1624	195. Poeloengasih, C. D., Bardant, T. B., Rosyida, V. T., Maryana, R., & Wahono, S. K. (2014).					
1625	Coastal community empowerment in processing Kappaphycus alvarezii: a case					
1626	study in Ceningan Island, Bali, Indonesia. Journal of Applied Phycology, 26(3), 1539–					
1627	1546. https://doi.org/10.1007/s10811-013-0153-x					
1628	196.Préat, N., De Troch, M., van Leeuwen, S., Taelman, S. E., De Meester, S., Allais, F., &					
1629	Dewulf, J. (2018). Development of potential yield loss indicators to assess the effect					
1630	of seaweed farming on fish landings. Algal Research, 35, 194–205.					
1631	https://doi.org/10.1016/j.algal.2018.08.030					
1632	197.Radulovich, R., Umanzor, S., Cabrera, R., & Mata, R. (2015). Tropical seaweeds for					
1633	human food, their cultivation and its effect on biodiversity enrichment. Aquaculture					
1634	(Amsterdam, Netherlands), 436, 40-46.					
1635	https://doi.org/10.1016/j.aquaculture.2014.10.032					
1636	198. Rameshkumar, S., & Rajaram, R. (2017). Experimental cultivation of invasive seaweed					
1637	Kappaphycus alvarezii (Doty) Doty with assessment of macro and meiobenthos					
1638	diversity from Tuticorin coast, Southeast coast of India. Regional Studies in Marine					
1639	Science, 9, 117–125. https://doi.org/10.1016/j.rsma.2016.12.002					
1640	199.Rani, S., Ahmed, M. K., Xiongzhi, X., Yuhuan, J., Keliang, C., & Islam, M. M. (2020).					
1641	Economic valuation and conservation, restoration & management strategies of					
1642	Saint Martin's coral island, Bangladesh. Ocean & Coastal Management, 183(105024).					
1643	https://doi.org/10.1016/j.ocecoaman.2019.105024					
1644	200. Revilla-Lovano, S., Sandoval-Gil, J. M., Zertuche-González, J. A., Belando-					
1645	Torrentes, M. D., Bernardeau-Esteller, J., Rangel-Mendoza, L. K., Ferreira-Arrieta, A.,					
1646	Guzmán-Calderón, J. M., Camacho-Ibar, V. F., Muñiz-Salazar, R., & Ávila-López, M. C.					
1647	(2021). Physiological responses and productivity of the seaweed Ulva ohnoi					

1648 (Chlorophyta) under changing cultivation conditions in pilot large land-based ponds. 1649 Algal Research, 56(102316), https://doi.org/10.1016/j.algal.2021.102316 1650 201. Roberts, D. A., Paul, N. A., Dworjanyn, S. A., Hu, Y., Bird, M. I., & de Nys, R. 1651 (2015). Gracilaria waste biomass (sampah rumput laut) as a bioresource for selenium 1652 biosorption. Journal of **Applied** Phycology, 27(1), 611-620. 1653 https://doi.org/10.1007/s10811-014-0346-y 1654 202. Robertson-Andersson, D. V., Potgieter, M., Hansen, J., Bolton, J. J., Troell, M., 1655 Anderson, R. J., Halling, C., & Probyn, T. (2008). Integrated seaweed cultivation on an abalone farm in South Africa. Journal of Applied Phycology, 20(5), 579-595. 1656 https://doi.org/10.1007/s10811-007-9239-7 1657 1658 203. Rößner, Y., Krost, P., & Schulz, C. (2014). Increasing seaweed crop yields 1659 through organic fertilisation at the nursery stage. Journal of Applied Phycology, 1660 26(2), 753-762. https://doi.org/10.1007/s10811-014-0269-7 1661 204. Salayo, N. D., Perez, M. L., Garces, L. R., & Pido, M. D. (2012). Mariculture 1662 development and livelihood diversification in the Philippines. Marine Policy, 36(4), 1663 867-881. https://doi.org/10.1016/j.marpol.2011.12.003 1664 205. Salazar, C., Jaime, M., & Quiroga, M. (2021). Transition patterns of fishermen 1665 and land farmers into small-scale seaweed aquaculture: The role of risk and time 1666 preferences. Marine Resource Economics, 36(3), 269-288. https://doi.org/10.1086/714417 1667 1668 206. Salles, J. P., Scherner, F., Yoshimura, C. Y., Fanganiello, M., Bouzon, Z. L., & 1669 Horta, P. A. (2010). Cultivation of native seaweed Gracilaria domingensis 1670 (Rhodophyta) in Southern Brazil. Brazilian Archives of Biology and Technology, 53(3), 633-640. https://doi.org/10.1590/S1516-89132010000300018 1671 1672 207. Sánchez-Romero, A., Miranda-Baeza, A., Rivas-Vega, M. E., López-Elías, J. A., 1673 Martínez-Córdova, L. R., & Tejeda-Mansir, A. (2016). Development of a model to 1674 simulate nitrogen dynamics in an integrated shrimp-macroalgae culture system 1675 with zero water exchange: Model of nitrogen dynamics in an integrated culture. 47(1), 1676 Journal of the World Aquaculture Society, 129-138. 1677 https://doi.org/10.1111/jwas.12242 1678 Sanderson, J. C., Dring, M. J., Davidson, K., & Kelly, M. S. (2012). Culture, yield 208. 1679 and bioremediation potential of Palmaria palmata (Linnaeus) Weber & Mohr and 1680 Saccharina latissima (Linnaeus) C.E. Lane, C. Mayes, Druehl & G.W. Saunders 1681 adjacent to fish farm cages in northwest Scotland. Aquaculture, 354-355, 128-135. 1682 https://doi.org/10.1016/j.aquaculture.2012.03.019

1683 1684	209. Socia	Santos, A. A., Brazil, S., Alves, A., Dorow, R., Araújo, L. A., & Hayashi, L. (2018).					
1685	Socioeconomic analysis of the seaweed <i>Kappaphycus alvarezii</i> and mollusi						
1686	(<i>Crassostrea gigas</i> and <i>Perna perna</i>) farming in Santa Catarina State, Southern Brazil. Custos e Agronegócios, 14(3), 443-472.						
	DI aZI	i. Custos e Agronegocios, 14(3), 443-472.					
1687	210.	Sarkar, S., Rekha, P. N., Balasubramanian, C. P., & Ambasankar, K. (2019).					
1688	Biore	emediation Potential of the Brackishwater macroalga <i>Gracilaria tenuistipitata</i>					
1689	(Rho	dophyta) co-cultured with Pacific white shrimp <i>Penaeus vannamei</i> (Boone).					
1690	Jour	nal of Coastal Research, 86(sp1), 248. <u>https://doi.org/10.2112/si86-036.1</u>					
1691	211. Sarka	ar, S., Rekha, P. N., Biswas, G., Ghoshal, T. K., Ambasankar, K., & Balasubramanian,					
1692	C. P.	C. P. (2019). Culture potential of the seaweed, <i>Gracilaria tenuistipitata</i> (Rhodophyta)					
1693	in br	in brackishwater tide fed pond system of sundarban, India. Journal of Coastal					
1694	Rese	arch, 86(sp1), 258-262. https://doi.org/10.2112/si86-038.1					
1695	212.Segh	etta, M., Hou, X., Bastianoni, S., Bjerre, AB., & Thomsen, M. (2016). Life cycle					
1696	asses	assessment of macroalgal biorefinery for the production of ethanol, proteins and					
1697	fertil	fertilizers – A step towards a regenerative bioeconomy. Journal of Cleaner					
1698	Prod	uction, 137, 1158–1169. <u>https://doi.org/10.1016/j.jclepro.2016.07.195</u>					
1699	213.Segh	etta, M., Marchi, M., Thomsen, M., Bjerre, AB., & Bastianoni, S. (2016). Modelling					
1700	biog	biogenic carbon flow in a macroalgal biorefinery system. Algal Research, 18, 144-					
1701	155. <u>k</u>	nttps://doi.org/10.1016/j.algal.2016.05.030					
1702	214.Segh	etta, M., Romeo, D., D'Este, M., Alvarado-Morales, M., Angelidaki, I., Bastianoni,					
1703	S., &	Thomsen, M. (2017). Seaweed as innovative feedstock for energy and feed -					
1704	Evaluating the impacts through a Life Cycle Assessment. Journal of Cleane						
1705	Prod	uction, 150, 1-15. <u>https://doi.org/10.1016/j.jclepro.2017.02.022</u>					
1706	215.Segh	etta, M., Tørring, D., Bruhn, A., & Thomsen, M. (2016). Bioextraction potential of					
1707	seaw	eed in Denmark – An instrument for circular nutrient management. The					
1708	Scier	Science of the Total Environment, 563–564, 513–529					
1709	https	s://doi.org/10.1016/j.scitotenv.2016.04.010					
1710	216.Sem	edi, B., da Costa, D. K., & Mahmudi, M. (2016). Feasibility study of seaweed					
1711	(Kap	paphycus alvarezii) mariculture using Geographic Information System in Hading					
1712	Bay,	East Flores Indonesia. Nature Environment and Pollution Technology, 15(4),					
1713	1347.						
1714	217.Sety	awidati, N., Liabot, P. O., Perrot, T., Radiarta, N., Deslandes, E., Bourgougnon, N.,					
1715	Ross	i, N., & Stiger-Pouvreau, V. (2017). In situ variability of carrageenan content and					
1716	biom	ass in the cultivated red macroalga <i>Kappaphycus alvarezii</i> with an estimation					
1717	of its	carrageenan stock at the scale of the Malasoro Bay (Indonesia) using satellite					

1718 image processing. Journal of **Applied** Phycology, 29(5), 2307-2321. 1719 https://doi.org/10.1007/s10811-017-1200-9 1720 218. Shan, T., Li, Q., Wang, X., Su, L., & Pang, S. (2019). Assessment of the genetic 1721 connectivity between farmed populations on a typical kelp farm and adjacent 1722 spontaneous populations of Saccharina japonica (Phaeophyceae, Laminariales) in 1723 China. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00494 1724 219. Shi, X., Qi, M., Tang, H., & Han, X. (2015). Spatial and temporal nutrient variations in 1725 the Yellow Sea and their effects on Ulva prolifera blooms. Estuarine, Coastal and Shelf Science, 163, 36-43. https://doi.org/10.1016/j.ecss.2015.02.007 1726 1727 220. Sievanen, L., Crawford, B., Pollnac, R., & Lowe, C. (2005). Weeding through 1728 assumptions of livelihood approaches in ICM: Seaweed farming in the Philippines 1729 Indonesia. Ocean ጴ 48(3-6), 297-313. and Coastal Management, 1730 https://doi.org/10.1016/j.ocecoaman.2005.04.015 1731 221.Smit, A. J., Fourie, A. M., Robertson, B. L., & du Preez, D. R. (2003). Control of the herbivorous isopod, Paridotea reticulata, in Gracilaria gracilis tank cultures. 1732 1733 Aquaculture (Amsterdam, Netherlands), 217(1-4)385-393. https://doi.org/10.1016/s0044-8486(02)00412-x 1734 1735 222. Söderqvist, T., Bas, B., de Bel, M., Boon, A., Elginoz, N., Garção, R., Giannakis, 1736 E., Giannouli, A., Koundouri, P., Moussoulides, A., Norrman, J., Rosén, L., Schouten, J.-1737 J., Stuiver, M., Tsani, S., Xepapadeas, P., & Xepapadeas, A. (2017). Socio-economic 1738 analysis of a selected multi-use offshore site in the North Sea. In The Ocean of 1739 Tomorrow (pp. 43-67). Springer International Publishing. 1740 223. Soma, K., van den Burg, S. W. K., Selnes, T., & van der Heide, C. M. (2019). 1741 Assessing social innovation across offshore sectors in the Dutch North Sea. Ocean 1742 & Coastal Management, 167, 42-51. https://doi.org/10.1016/j.ocecoaman.2018.10.003 224. 1743 Sondak, C. F. A., Ang, P. O., Jr, Beardall, J., Bellgrove, A., Boo, S. M., Gerung, 1744 G. S., Hepburn, C. D., Hong, D. D., Hu, Z., Kawai, H., Largo, D., Lee, J. A., Lim, P.-E., 1745 Mayakun, J., Nelson, W. A., Oak, J. H., Phang, S.-M., Sahoo, D., Peerapornpis, Y., ... 1746 Chung, I. K. (2017). Carbon dioxide mitigation potential of seaweed aquaculture 1747 (SABs). Journal of Applied Phycology, 29(5), 2363-2373. https://doi.org/10.1007/s10811-016-1022-1 1748 1749 225. Song, J. M., Li, X. G., Yuan, H. M., Zheng, G. X., & Yang, Y. F. (2008). Carbon 1750 fixed by phytoplankton and cultured algae in China coastal seas. Acta Ecol. Sin, 1751 28(2), 551-558. 1752 226. Song, W., Jiang, M., Wang, Z., Wang, H., Zhang, X., & Fu, M. (2018). Source of 1753 propagules of the fouling green macroalgae in the Subei Shoal, China. Hai Yang Xue

1754 Bao [Acta Oceanologica Sinica], 37(4), 102-108. https://doi.org/10.1007/s13131-018-1755 1169-5 1756 227. Steenbergen, D. J., Marlessy, C., & Holle, E. (2017). Effects of rapid livelihood 1757 transitions: Examining local co-developed change following a seaweed farming 1758 boom. Marine Policy, 82, 216-223. https://doi.org/10.1016/j.marpol.2017.03.026 1759 228. Suyo, J. G. B., Le Masson, V., Shaxson, L., Luhan, M. R. J., & Hurtado, A. Q. 1760 (2020). A social network analysis of the Philippine seaweed farming industry: 1761 118(104007). Unravellina the web. Marine Policy, 104007. https://doi.org/10.1016/j.marpol.2020.104007 1762 1763 229. Suyo, J. G. B., Le Masson, V., Shaxson, L., Luhan, M. R. J., & Hurtado, A. Q. 1764 (2021). Navigating risks and uncertainties: Risk perceptions and risk management 1765 strategies in the Philippine seaweed industry. Marine Policy, 126(104408), 104408. 1766 https://doi.org/10.1016/j.marpol.2021.104408 1767 230. Tabassum, M. R., Xia, A., & Murphy, J. D. (2016). The effect of seasonal 1768 variation on biomethane production from seaweed and on application as a gaseous 1769 transport biofuel. Bioresource Technology, 209. 213-219. 1770 https://doi.org/10.1016/j.biortech.2016.02.120 1771 231. Tano, S. A., Halling, C., Lind, E., Buriyo, A., & Wikström, S. A. (2015). Extensive spread 1772 of farmed seaweeds causes a shift from native to non-native haplotypes in natural seaweed beds. Marine Biology, 162(10), 1983-1992. https://doi.org/10.1007/s00227-1773 015-2724-7 1774 1775 232. Thahir, H., Rombe, E., Ponisri, Vesakha, G., & Hadi, S. (2018). Analysis of 1776 internal risk management in Indonesian seaweed farming. International Journal of Engineering & Technology, 7(4.15), 200. https://doi.org/10.14419/ijet.v7i4.15.21446 1777 1778 233. Thamrin, Y., Wahyu, A., Russeng, S. S., Wahyuni, A., & Hardianti, A. (2020). 1779 Ergonomics and musculoskeletal disorders among seaweed workers in Takalar 1780 Regency: A mixed method approach. Medicina Clínica Práctica, 3(sp1), 100110. https://doi.org/10.1016/j.mcpsp.2020.100110 1781 1782 234. Theuerkauf, S. J., Morris, J. A., Jr, Waters, T. J., Wickliffe, L. C., Alleway, H. K., 1783 & Jones, R. C. (2019). A global spatial analysis reveals where marine aquaculture can e0222282. 1784 benefit nature and people. PloS One, 14(10), 1785 https://doi.org/10.1371/journal.pone.0222282 Thomas, J.B E., Ribeiro, M.S., Potting, J., Cervin, G., Nylund, G.M., Olsson, J., 1786 235. 1787 Albers, E., Undeland, I., Pavia, H., & Gröndahl, F. (2021). A comparative environmental 1788 life cycle assessment of hatchery, cultivation, and preservation of the kelp

1789	Saccharina latissima. ICES Journal of Marine Science: Journal Du Conseil, 78(1), 451–
1790	467. https://doi.org/10.1093/icesjms/fsaa112
1791	236. Thomas, J.B.E., Ramos, F.S., & Gröndahl, F. (2019). Identifying suitable sites
1792	for macroalgae cultivation on the Swedish west coast. Coastal Management: An
1793	International Journal of Marine Environment, Resources, Law, and Society, 47(1), 88–
1794	106. https://doi.org/10.1080/08920753.2019.1540906
1795	237. Titlyanov, E. A., & Titlyanova, T. V. (2010). Seaweed cultivation: methods and
1796	problems. Russian Journal of Marine Biology, 36(4), 227-242.
1797	238. Vadiveloo, A., Nwoba, E. G., & Moheimani, N. R. (2019). Viability of combining
1798	microalgae and macroalgae cultures for treating anaerobically digested piggery
1799	effluent. Journal of Environmental Sciences (China), 82, 132–144.
1800	https://doi.org/10.1016/j.jes.2019.03.003
1801	van den Burg, S. W. K., Röckmann, C., Banach, J. L., & van Hoof, L. (2020).
1802	Governing risks of multi-use: Seaweed aquaculture at offshore wind farms.
1803	Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.00060
1804	van den Burg, S. W. K., van Duijn, A. P., Bartelings, H., van Krimpen, M. M., &
1805	Poelman, M. (2016). The economic feasibility of seaweed production in the North
1806	Sea. Aquaculture Economics & Management, 20(3), 235–252.
1807	https://doi.org/10.1080/13657305.2016.1177859
1808	241.van der Molen, J., Ruardij, P., Mooney, K., Kerrison, P., O'Connor, N. E., Gorman, E.,
1809	Timmermans, K., Wright, S., Kelly, M., Hughes, A. D., & Capuzzo, E. (2018). Modelling
1810	potential production of macroalgae farms in UK and Dutch coastal waters.
1811	Biogeosciences, 15(4), 1123-1147. https://doi.org/10.5194/bg-15-1123-2018
1812	van Oirschot, R., Thomas, JB. E., Gröndahl, F., Fortuin, K. P. J., Brandenburg,
1813	W., & Potting, J. (2017). Explorative environmental life cycle assessment for system
1814	design of seaweed cultivation and drying. Algal Research, 27, 43–54.
1815	https://doi.org/10.1016/j.algal.2017.07.025
1816	243. Varela, D. A., Hernríquez, L. A., Fernández, P. A., Leal, P., Hernández-
1817	González, M. C., Figueroa, F. L., & Buschmann, A. H. (2018). Photosynthesis and
1818	nitrogen uptake of the giant kelp Macrocystis pyrifera (Ochrophyta) grown close
1819	to salmon farms. Marine Environmental Research, 135, 93–102.
1820	https://doi.org/10.1016/j.marenvres.2018.02.002
1821	Villanueva, R.D., Montaño, M.N.E., & Romero, J.B. (2009). lota-carrageenan
1822	from a newly farmed, rare variety of eucheumoid seaweed—"endong." Journal of
1823	Applied Phycology, 21(1), 27–30. https://doi.org/10.1007/s10811-008-9356-y

1824	245.	Villanueva, R.D., Romero, J.B., Montaño, M.N.E., & de la Peña, P.O. (2011).
1825	Harve	est optimization of four $\it Kappaphycus$ species from the Philippines. Biomass &
1826	Bioer	nergy, 35(3), 1311–1316. <u>https://doi.org/10.1016/j.biombioe.2010.12.044</u>
1827	246.	Visch, W., Kononets, M., Hall, P.O.J., Nylund, G.M., & Pavia, H. (2020).
1828	Envir	onmental impact of kelp (Saccharina latissima) aquaculture. Marine Pollution
1829	Bulle	tin, 155, 110962. <u>https://doi.org/10.1016/j.marpolbul.2020.110962</u>
1830	247.	Wallner-Hahn, S., & de la Torre-Castro, M. (2017). Early steps for successful
1831	mana	agement in small-scale fisheries: An analysis of fishers', managers' and
1832	scien	tists' opinions preceding implementation. Marine Pollution Bulletin, 134, 186-
1833	196. <u>k</u>	nttps://doi.org/10.1016/j.marpolbul.2017.07.058
1834	248.	Walls, A. M., Edwards, M. D., Firth, L. B., & Johnson, M. P. (2017). Successional
1835	chan	ges of epibiont fouling communities of the cultivated kelp Alaria esculenta:
1836	pred	ictability and influences. Aquaculture Environment Interactions, 9, 57–71.
1837	https	s://doi.org/10.3354/aei00215
1838	249.	Walls, A. M., Edwards, M. D., Firth, L. B., & Johnson, M. P. (2019). Ecological
1839	primi	ing of artificial aquaculture structures: kelp farms as an example. Journal of the
1840	Marir	ne Biological Association of the United Kingdom. Marine Biological Association
1841	of	the United Kingdom, 99(4), 729-740.
1842	<u>https</u>	s://doi.org/10.1017/s0025315418000723
1843	250.	Walls, A. M., Kennedy, R., Edwards, M. D., & Johnson, M. P. (2017). Impact of
1844	kelp	cultivation on the Ecological Status of benthic habitats and Zostera marina
1845	seag	rass biomass. Marine Pollution Bulletin, 123(1–2), 19–27.
1846	<u>https</u>	s://doi.org/10.1016/j.marpolbul.2017.07.048
1847	251. Walls	, A. M., Kennedy, R., Fitzgerald, R. D., Blight, A. J., Johnson, M. P., & Edwards, M.
1848	D. (2	016). Potential novel habitat created by holdfasts from cultivated <i>Laminaria</i>
1849	digit	ata: assessing the macroinvertebrate assemblages. Aquaculture Environment
1850	Inter	actions, 8, 157–169. <u>https://doi.org/10.3354/aei00170</u>
1851	252.	Wang, Q., Luan, LL., Chen, LD., Yuan, DN., Liu, S., Hwang, JS., & Yang, Y
1852	F. (2	016). Recruitment from an egg bank into the plankton in Baisha Bay, a
1853	mario	culture base in Southern China. Estuarine, Coastal and Shelf Science, 181, 312-
1854	318. <u>k</u>	https://doi.org/10.1016/j.ecss.2016.08.040
1855	253.	Wang, Z., Xiao, J., Fan, S., Li, Y., Liu, X., & Liu, D. (2015). Who made the world's
1856	large	st green tide in China?-an integrated study on the initiation and early
1857	deve	lopment of the green tide in Yellow Sea: Green tide in Yellow Sea of China.
1858	Limn	ology and Oceanography, 60(4), 1105–1117. https://doi.org/10.1002/lno.10083

1859 254. Whiting, J. M., Wang, T., Yang, Z., Huesemann, M. H., Wolfram, P. J., Mumford, 1860 T. F., & Righi, D. (2020). Simulating the trajectory and biomass growth of free-1861 floating macroalgal cultivation platforms along the U.S. west coast. Journal of 1862 Marine Science and Engineering, 8(11), 938. https://doi.org/10.3390/jmse8110938 1863 255. Wibowo, Y., Nafi, A., & Jawara, R. R. (2020). Effect of seed type and harvest time of seaweed (Eucheuma cottonii) on the quality of alkali treated cottonii. 1864 International Journal on Advanced Science, Engineering and Information 1865 Technology, 10(4), 1669. https://doi.org/10.18517/ijaseit.10.4.11534 1866 1867 256. Wu, J., Zhang, H., Pan, Y., Krause-Jensen, D., He, Z., Fan, W., Xiao, X., Chung, 1868 I., Marbà, N., Serrano, O., Rivkin, R. B., Zheng, Y., Gu, J., Zhang, X., Zhang, Z., Zhao, 1869 P., Qiu, W., Chen, G., & Duarte, C. M. (2020). Opportunities for blue carbon 1870 strategies in China. Ocean & Coastal Management, 194, 105241. https://doi.org/10.1016/j.ocecoaman.2020.105241 1871 1872 257. Xia, B., Cui, Y., Chen, B., Cui, Z., Qu, K., & Ma, F. (2014). Carbon and nitrogen 1873 isotopes analysis and sources of organic matter in surface sediments from the 1874 Sanggou Bay and its adjacent areas, China. Hai Yang Xue Bao [Acta Oceanologica 1875 Sinica], 33(12), 48-57. https://doi.org/10.1007/s13131-014-0574-7 1876 258. Xiao, X., Agusti, S., Lin, F., Li, K., Pan, Y., Yu, Y., Zheng, Y., Wu, J., & Duarte, C. 1877 M. (2017). Nutrient removal from Chinese coastal waters by large-scale seaweed 1878 aquaculture. Scientific Reports, 7(1), 46613. https://doi.org/10.1038/srep46613 1879 259. Xiao, X., Agustí, S., Yu, Y., Huang, Y., Chen, W., Hu, J., Li, C., Li, K., Wei, F., Lu, 1880 Y., Xu, C., Chen, Z., Liu, S., Zeng, J., Wu, J., & Duarte, C. M. (2021). Seaweed farms provide refugia from ocean acidification. The Science of the Total Environment, 1881 1882 776, 145192. https://doi.org/10.1016/j.scitotenv.2021.145192 1883 260. Xie, X., He, Z., Hu, X., Yin, H., Liu, X., & Yang, Y. (2017). Large-scale seaweed 1884 cultivation diverges water and sediment microbial communities in the coast of 1885 Nan'ao Island, South China Sea. The Science of the Total Environment, 598, 97-108. 1886 https://doi.org/10.1016/j.scitotenv.2017.03.233 1887 261.Xing, Q., An, D., Zheng, X., Wei, Z., Wang, X., Li, L., Tian, L., & Chen, J. (2019). 1888 Monitoring seaweed aquaculture in the Yellow Sea with multiple sensors for 1889 managing the disaster of macroalgal blooms. Remote Sensing of Environment, 231, 1890 111279. https://doi.org/10.1016/j.rse.2019.111279 1891 262. Xu, Q., Zhang, H., Ju, L., & Chen, M. (2014). Interannual variability of Ulva 1892 prolifera blooms in the Yellow Sea. International Journal of Remote Sensing, 35(11-1893 12), 4099-4113. https://doi.org/10.1080/01431161.2014.916052

1894 263. Yan, C., McWilliams, J. C., & Chamecki, M. (2021). Generation of attached 1895 Langmuir circulations by a suspended macroalgal farm. Journal of Fluid Mechanics, 1896 915(A76). https://doi.org/10.1017/jfm.2021.111 1897 264. Yang, Y., Liu, Q., Chai, Z., & Tang, Y. (2015). Inhibition of marine coastal 1898 bloom-forming phytoplankton by commercially cultivated Gracilaria lemaneiformis 1899 (Rhodophyta). Journal of Applied Phycology, 27(6), 2341-2352. https://doi.org/10.1007/s10811-014-0486-0 1900 1901 265. Yang, Y.-F., Fei, X.-G., Song, J.-M., Hu, H.-Y., Wang, G.-C., & Chung, I. K. 1902 (2006). Growth of Gracilaria lemaneiformis under different cultivation conditions 1903 and its effects on nutrient removal in Chinese coastal waters. Aquaculture 254(1-4)1904 (Amsterdam, Netherlands), 248-255. 1905 https://doi.org/10.1016/j.aguaculture.2005.08.029 1906 266. Ye, G., Jin, M., & Jia, S. (2018). Ecological service value evaluation of seaweed 1907 aquaculture in Zhejiang and Jiangsu Provinces. Journal of Fisheries of China, 42(8), 1254-1262. 1908 267. 1909 Yong, Y. S., Yong, W. T. L., Thien, V. Y., Ng, S. E., Anton, A., & Yassir, S. (2015). 1910 Acclimatization of micropropagated Kappaphycus alvarezii (Doty) Doty ex Silva 1911 (Rhodophyta, Solieriaceae) in outdoor nursery system. Journal of Applied Phycology, 27(1), 413-419. https://doi.org/10.1007/s10811-014-0289-3 1912 1913 268. Yoshimura, C. Y., Cunha, S. R., & Oliveira, E. C. (2006). Testing open-water 1914 cultivation techniques to Gracilaria domingensis (Rhodophyta, Gracilariales) in 1915 Santa Catarina, Brazil. Journal of Coastal Research, 1290-1293. 1916 http://www.istor.org/stable/25742961 1917 269. Zamroni, A., Laoubi, K., & Yamao, M. (2011). The development of seaweed 1918 farming as a sustainable coastal management method in Indonesia: an opportunities 1919 and constraints assessment. Sustainable Development and Planning V. 1920 270. Zhang, A., Wen, X., Yan, H., He, X., Su, H., Tang, H., Jordan, R. W., Wang, Y., & 1921 Jiang, S. (2018). Response of microalgae to large-seaweed cultivation as revealed 1922 by particulate organic matter from an integrated aquaculture off Nan'ao Island, 137-143. 1923 South China. Marine Pollution Bulletin, 133, https://doi.org/10.1016/j.marpolbul.2018.05.026 1924 1925 271. Zhang, J., Shi, J., Gao, S., Huo, Y., Cui, J., Shen, H., Liu, G., & He, P. (2019). Annual 1926 patterns of macroalgal blooms in the Yellow Sea during 2007-2017. PloS One, 14(1), 1927 e0210460. https://doi.org/10.1371/journal.pone.0210460 1928 272. Zhang, J., Zhao, P., Huo, Y., Yu, K., & He, P. (2017). The fast expansion of 1929 Pyropia aquaculture in "Sansha" regions should be mainly responsible for the Ulva

1021	blooms in Yellow Sea. Estuarine, Coastal and Shelf Science, 189, 58-65.
1931	https://doi.org/10.1016/j.ecss.2017.03.011
1932	Zhang, J., Hansen, P. K., Fang, J., Wang, W., & Jiang, Z. (2009). Assessment
1933	of the local environmental impact of intensive marine shellfish and seaweed
1934	farming—Application of the MOM system in the Sungo Bay, China. Aquaculture
1935	(Amsterdam, Netherlands), 287(3-4), 304-310.
1936	https://doi.org/10.1016/j.aquaculture.2008.10.008
1937	274. Zhang, J., Hansen, P. K., Wu, W., Liu, Y., Sun, K., Zhao, Y., & Li, Y. (2020).
1938	Sediment-focused environmental impact of long-term large- scale marine bivalve
1939	and seaweed farming in Sungo Bay, China. Aquaculture (Amsterdam, Netherlands),
1940	528(735561), 735561. https://doi.org/10.1016/j.aquaculture.2020.735561
1941	Zhang, X., Uchiyama, Y., & Nakayama, A. (2019). On relaxation of the
1942	influences of treated sewage effluent on an adjacent seaweed farm in a tidal strait.
1943	Marine Pollution Bulletin, 144, 265–274.
1944	https://doi.org/10.1016/j.marpolbul.2019.04.050
1945	276. Zhao, X. B., Pang, S. J., Liu, F., Shan, T. F., Li, J., Gao, S. Q., & Kim, H. G. (2016).
1946	Intraspecific crossing of Saccharina japonica using distantly related unialgal
1947	gametophytes benefits kelp farming by improving blade quality and productivity
1948	at Sanggou Bay, China. Journal of Applied Phycology, 28(1), 449–455.
1949	https://doi.org/10.1007/s10811-015-0597-2
1950	277. Zheng, Y., Jin, R., Zhang, X., Wang, Q., & Wu, J. (2019). The considerable
1951	environmental benefits of seaweed aquaculture in China. Stochastic Environmental
1952	Research and Risk Assessment: Research Journal, 33(4-6), 1203-1221.
1953	https://doi.org/10.1007/s00477-019-01685-z
1954	278. Zhou, Y., Yang, H., Hu, H., Liu, Y., Mao, Y., Zhou, H., Xu, X., & Zhang, F. (2006).
1955	Bioremediation potential of the macroalga <i>Gracilaria lemaneiformis</i> (Rhodophyta)
1956	integrated into fed fish culture in coastal waters of north China. Aquaculture
1957	(Amsterdam, Netherlands), 252(2-4), 264-276.
1958	https://doi.org/10.1016/j.aquaculture.2005.06.046
1959	Zuniga-Jara, S., & Contreras, C. (2020). An economic valuation of the
1960	commercial cultivation of Agarophyton chilensis in northern Chile. Journal of
1961	Applied Phycology, 32(5), 3233–3242. https://doi.org/10.1007/s10811-020-02165-6
1962	280. Zuniga-Jara, S., & Soria-Barreto, K. (2018). Prospects for the commercial
1963	cultivation of macroalgae in northern Chile: the case of Chondracanthus chamissoi
1964	and Lessonia trabeculata. Journal of Applied Phycology, 30(2), 1135–1147.
1965	https://doi.org/10.1007/s10811-017-1298-9

1966 ANNEX 1: WORK DOCUMENT OF THE DELPHI PROCESS 1967 QUESTIONS SENT TO THE EXPERTS FOR THE FIRST ROUND OF THE DELPHI PROCESS. 1968 Dear Expert, 1969 RE: Expert opinion requested to highlight knowledge gaps for enabling the 1970 upscaling macroalgal cultivation in European waters 1971 This questionnaire is part of ongoing work carried out under the framework of the 1972 EKLIPSE Macroalgae expert group. This group was formed in February 2021 as a 1973 response to a request made to Eklipse by the European Commission's Directorate 1974 General for Maritime Affairs & Fisheries, Unit for Maritime Innovation, Marine 1975 Knowledge and Investment (DG MARE), following Eklipse's fifth call for requests 1976 (CfR.5/2020). The request was: What are the knowledge gaps to be addressed 1977 before harvesting the potential of macroalgae culture in providing climate-related 1978 and other ecosystem services (i.e., coastal protection; nutrient recycling; lower 1979 impact food, lower impact material, etc.) especially at larger scales? 1980 For the purpose of this work, we consider the definition of Ecosystem Services 1981 as accepted by CICES (available from www.cices.eu). 1982 With a strong focus on the identification of knowledge gaps on ecosystem 1983 services and macro-algae cultivation, this Eklipse exercise will take into account 1984 qualitative and quantitative data. Such assessment is needed to critically assess 1985 the potential of upscaling macroalgae culture to serve as a solution to mitigate 1986 climate change, enhance coastal biodiversity and provide sustainable ecosystem 1987 services. Eklipse results are expected to inform future macroalgae research and 1988 Commission activities, through the identification of knowledge gaps. 1989 You are receiving this information because you were selected as an expert and/or 1990 key stakeholder and we value your opinions on this matter. We kindly ask you to 1991 reply to the questions below within 7 days. There is no word limit for your replies, 1992 but we do ask you to be as specific as possible. There is no need to elaborate 1993 your answers with justifications (such as references). We estimate that the 1994 questionnaire will take no longer than 20 minutes to complete. 1995 Please note that this is the first round of questions for this Delphi process and we 1996 will be very grateful if you would be happy for us to contact you again in a few 1997 weeks for further rounds. These next rounds may, for instance, ask you to rank 1998 the answers given during the first round and secondly ask you to review your initial 1999 ranking based on the overall responses provided. 2000 To standardize the language of marine aquaculture, we propose three site categories: "nearshore sheltered", "nearshore exposed" and "offshore" sites, 2001 2002 according to Bak et al. (2020). These categories are dependent on two site 2003 attributes: "water depth" and "distance to shore". The offshore site category is reserved for sites with a distance to shore of ≥3 NM; the nearshore exposed are 2004 2005 sites with a water depth ≥50 m yet <3 NM from shore, finally, the nearshore

2037

2006	sheltered sites are those with a water depth <50 m and <3 NM from shore.	
2007 2008 2009 2010	to land based cultivation, transitional (e.g., estuaries) or marine waters (e.g., near shore sheltered, near shore exposed, off shore) or common to some or all of	
2011 2012		
2013 2014 2015	2 - What are the knowledge gaps on macroalgae cultivation (e.g., processing and marketing) that would need to be addressed in order to upscale it and enhance its delivery of ES?	
2016 2017 2018	economic, legal, social, environmental) that need to be resolved before	
2019 2020		
2021	Background assessment of the participants	
2022 2023		
2024 2025		
2026	C) NGO (e.g., environmental)	
2027 2028		
2029		
2030 2031	2 – If you belong to the Academic or Industry sector, on which aspect do you focus your work:	
2032		
	☐ Macroalgae hatchery/nursery ☐ Macroalgae processing	
2000	2036	
2034	☐ Macroalgae cultivation	
	3 – Is your work experience focused on one country or region? If yes, please specify.	
2038	☐ Asia and the Pacific: 2039 ☐ Europe:	
	2021 August Method Protocol	73

	I Latin America and the Caribbean:	2042		Near East:					
2011	Caribboan	2043		North America:					
2044 2045	J				sed on a	macroalga	e species (or group of	
2046 2047 2048	based cultivation, t	ransitio	nal						
2049	Please choose you	r work	area	a (click here)					
2050 2051	3 3	20		experience do y □ more than 2		der yourse	elf to have?		
2053	QUESTIONS SENT TO THE	EXPER	RTS F	FOR THE SECOND	O ROUND	OF THE DE	ELPHI PROC	ESS.	
2054	Dear Expert,								
2055 2056	• • •	•			knowle	dge gaps	for enab	oling the	
2057 2058 2059	round of this proces	•		•		•			
2060 2061 2062 2063 2064	Delphi process, we not this stage we have 5 most important of	ow asle only	k yo ' foo s lis	our contributi ur tasks. Esse sted, which a	on for tentially	:he secor you are a	nd and fina asked to a	al round. rank the	
2065		·							
206620672068	to 5, where 1 is the r	nost ir	mp	ortant and 5 i	s the le	ast impo	rtant of t	he ones	
2069	□ Macroalgae grown	for foo	od (i	including hydro	ocolloids	s)			
2070	□ Macroalgae grown	for fee	ed						
2071									

2072	☐ Macroalgae grown as a source of energy					
2073 2074	☐ Regulation of Water quality (including eutrophication, biomitigation, bioremediation)					
2075	□ Carbon sequestration/storage/accumulation by macroalgae					
2076	□ Climate regulation (CO2, carbon cycle, DMS, OTHER)					
2077	□ Coastal protection (erosion, wave reduction, flood control)					
2078	☐ Maintaining nursery populations and habitats (including gene pool protection)					
2079	□ Pest and disease control					
2080	☐ Characteristics of living systems that enable education and training					
2081	☐ Elements of living systems used for recreation and tourism					
2082 2083 2084 2085	2 - From the list of knowledge gaps presented below, please select the 5 that are most important to you and rank them from 1 to 5 where 1 is the most important and 5 is the least important of the ones selected. If you include a category with subcategories please rank also those.					
2086 2087 2088	Note that these are the knowledge gaps on macroalgae cultivation that would need to be addressed in order to upscale it and enhance its ES, according to the answers from the previous round.					
2089	□ Environmental Data					
2090	Occurrence/impact of nuisance species					
2091	Biodiversity impact					
2092	Nutrient uptake/bioremediation					
2093	□ Farming Technologies					
2094	Ensure consistent production quality					
2095	Strain improvement					
2096	Technologies for further cultivation approaches					
2097	Develop mechanization for seaweed farming					
2098	□ Technologies for macroalgae processing					

2099	
2100	□ Data obtained from "real" macroalgae farming
2101	Appropriate scale of production
2102	Appropriate spatial planning for farming sites
2103	□ Market data
2104	Adequate price
2105	Adequate value-chain connections
2106	Detailed market information
2107	□ Economic data
2108	Information on valorization of Ecosystem Services
2109	Appropriate business cases
2110	□ Politics
2111	□ Certification
2112	Food Safety
2113	CO ₂ footprint
2114	Ecosystem provisioning
2115	□ Training
2116 2117 2118	2.1 Please provide, in a concise manner, possible ways (tasks and/or key players) to address those knowledge gaps. "SPACE FOR TEXT"
2119 2120 2121 2122 2123	3 - From the list of negative impacts or trade-offs that macroalgae cultivation upscaling may lead to (identified in the previous round of questions) please select the 5 that you think are most severe and rank them from 1 to 5, where 1 is likely to be the most severe and 5 is the least severe of the ones selected.
2124	□ Conflict with other users/uses (at land or sea)
2125	□ Negative impacts on ecosystem biodiversity

2126	☐ Aesthetics
2127	☐ Mismatch in supply and demand of biomass
2128 2129	$\hfill \square$ Unknown environmental impacts (e.g. on deep sea, benthic and pelagic ecosystems)
2130	☐ Over exploitation of the environment
2131	☐ Shifts in seaweed genetic diversity
2132	□ Pollution (e.g. plastics)
2133	☐ Water flow reduction
2134 2135	☐ Physical damage (e.g. damage to the sea floor resulting from the farming structures, anchors, stakes, etc.)

ANNEX 2. OVERVIEW OF DIFFERENT CATEGORIES USED FOR CLASSIFICATION OF DIFFERENT ARTICLES SELECTED IN THE QSR

2138

2136

2137

N°	Category	Subcategories	Explanation
1	Species		Species or taxonomic group considered in the study.
2	Country		Country, countries or geographic region (e.g. North Atlantic coast of Europe) where the study was performed
3	Scale	NA/Local/Regional/ Large/Global	Specify study scale choosing one of the options
4	Sector	NA	
		All	Non specified or seaweed aquaculture in a general sense
		None	Seaweed harvesting, seaweed as resource
		Land-based cultivation	Cultivation of macroalgae on land.
		Transitional	Cultivation of macroalgae in estuarine or brackish waters.
		Near-shore, sheltered	Cultivation of macroalgae in marine waters <50 m water depth & <3 NM distance to shore.
		Near-shore, exposed	Cultivation of macroalgae in marine waters >50 m depth & <3 NM from shore.
		Offshore	>3 NM from shore.
5	PESTEL analysis	NA	
		Political	
		Economic	
		Social	

	Technical	
	Environmental	
	Logol	
6 Aquaculture type	Legal NA	
	All	Non specified or seaweed aquaculture in a general sense.
	None	Seaweed harvesting, seaweed as resource
	Land-based cultivation	Cultivation of macroalgae on land.
	Transitional	Cultivation of macroalgae in estuarine or brackish waters.
	Near-shore, sheltered	Cultivation of macroalgae in marine waters <50 m water depth & <3 NM distance to shore.
	Near-shore, exposed	cultivation of macroalgae in marine waters >50 m depth & <3 NM from shore.
	Offshore	>3 NM from shore.
7 Study protocol	NA	NA
	BACI	Studies considering a "Before-After- Control-Impact" design.
	Before-After	Studies considering conditions previous to the installation of seaweed aquaculture facilities.
	Control-Impact	Studies comparing natural communities and seaweed crops.
	Descriptive	Descriptive or observational studies with no comparisons with references.

		Other	Other studies not considering quantitative or qualitative analyses.
		Modelling	Studies using models to assess or identify ecosystem services or disservices.
8	Farm size	N/A	not defined in the methodological part
		Pilot	Small-scale, experimental farm to test feasibility
		Small	e.g. family runned farms of villages
		Medium	e.g. larger farming activities but not as extended as covering bays, regions; or farms with < 50 lines (x 200 m; Campbell et al. 2019)
		Large	e.g. farming activities covering whole bays, regions, or large coastal areas; or farms with > 50 lines (x 200 m; Campbell et al. 2019)
9	Provisioning	NA	not defined in the methodological part
		Food	
		Hydrocolloids	
		Feed (specified)	
		Other (specified)	
10	Regulating and maintenance	NA	not defined in the methodological part
		Biological regulation (specified)	Alien species, biodiversity/genetic conservation, habitat provision, algal bloom regulation, other.
		Water quality	Eutrophication, biomitigation, bioremediation. Specified.
		Coastal protection	Erosion, wave reduction.
		Climate regulation (specified)	CO ₂ , carbon cycle, DMS, other.

		Other (specified)	
11	Cultural	NA	
		Symbolic and esthetic	
		Recreation and tourism	
		Cognitive (specified)	Inspiration
		Scientific knowledge (specified)	e.g. Number of proposals/grants.
		Education/learning	
		Other (specified)	
12	Knowledge gaps		
13	Identified constraints		
14	Disservice/Neg ative Impacts/Trade- Offs		
15	Disservice comments		
16	Expert notes		
17	Specified		Additional information to different drop- down points, when required

2139

2141

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

2140 Annex 3. Overview of different types of constraints identified in the

ANALYSED LITERATURE.

PESTEL	Туре	Description
Study	Length	Insufficient study length
	Size	Small scale (spatial and temporal) experiment
	Stats	Correlational data, not evaluated data
Environmental	Data	Insufficient amount of environmental data
	Seasonality	Seasonal effects, e.g. during growing harvesting period
	Weather	Storms and extreme events
	Substrate	Effect of type and conditions of natural or artificial substrate
	Emission	CO2, Nutrients balance - footprint
	Nuisance species	Encrusting or epiphytic organisms affecting biomass quality or cultivation process; diseases
	Water conditions	Water quality and remediation processes and pollution load not sufficiently known
	Predator/grazer	Grazing on cultivated macroalgae
	Biological shift	Effects on taxa and communities adjacent to the seaweed farm
	Invasion	Introduction of invasive non-native species
Economical	Financiation	Unclear/unspecified financial viability, dependence on other lifestocks

	Market	Market and value chain elements
Technical	Nursery	Seedling, stock quality, new strains in cultivation
	Post-Harvest	Management and processes after harvesting
	Harvest	Timing, techniques etc. harvest-related
	Production	Amount of produced biomass, production speed
	Product quality	Quality of seaweed products
	Training	Training of people
	Technology	Development in technology
Political	ABS	Access benefit sharing
	Dependence	Close relation / connection to other activities, e.g. wind parks
	No support	No governance support
	Space	Use of space
	Awareness	Potential provision of ecosystem services
Social	Gender	Gender inequality observed
	Jobs	Jobs connected with seaweed aquaculture

2142

2144

REPORT: MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES

2143 ANNEX 4. - OVERVIEW OF DIFFERENT TYPES OF KNOWLEDGE GAPS IDENTIFIED

IN THE ANALYSED LITERATURE

PESTEL	Туре	Examples
Environmental	Data	Uncertainty associated with modelling, need for more
		validated models, need for systematic data collection
	Seasonality	Observed seasonal/ inter-annual effects, e.g.
		growing/ harvesting period
	Weather	Observed effects of more severe weather events
		e.g. storms
	Substrate	Effect of present natural or artificial substrate (type,
		conditions), creation of novel habitats
	Emission/Absorpt	CO2, Nutrients balance - food print, species
	ion	dependent, Carbon footprint (using seaweed as
		terrestrial crop fertiliser), need for LCA for CO2
		regarding bioethanol production, impact of emission
		of volatile halocarbons
	Nuisance species	Incrusting or epiphytising organisms affecting
	/ diseases	biomass quality or cultivation process, diseases,
		biofouling, HAB formation and mitigation measures,
		influence of environmental conditions
	Water quality	Water quality and remediation processes and
		pollution load not sufficiently known, nutrient inputs
		from terrestrial systems, cultivation in transitional
		waters
	Predator/grazer	Grazing on cultivated macroalgae vs epiphyte
		control, effect of grazing on production losses
	Introduced	Introduced species, population etc. spreading in
	species	comparison to local types, maintenance and
		biosecurity
	Wider ecosystem	Effect of farms on coral reefs, phytoplankton
	effects	communities, seagrass beds, fish assemblages/
		landings, fish farms, water quality, potential
		overharvesting of wild stocks, microbial communities,
		impact of associated communities post-harvest,
		creation of novel habitats, effect of stocking density,
		persistence of ecosystem services when seaweed
		cultivated

	Genetic	Effect on native seagrass genetic diversity,
		relationship between native and wild populations,
		influence of geographical distance and habitat
		discontinuity
	Carrying capacity	Effect on carrying capacity of region
Economical	Financial	Financial viability, co-culture potential, sharing of ABS
		agreements
	LCA	Life Cycle Assessment for different products (e.g.
		biofuel, protein, liquid fertilisers) and culture
		environments (e.g. seawalls). Need to consider
		climate change in risk analysis
Technical	Nursery	Seedlings, reproductive life cycles, stock quality, new
		strains in cultivation, development of new strain
		markers, nutrient storage/ deficiencies on pre-
		deployment phase, optimal stocking densities in
		IMTA systems, new cultivars to improve nutrient
		uptake, role of microalgae unintentionally introduced
		into system. Optimisation of aeration regimes.
	Post-harvest	Management and processes after harvesting, e.g. way
		lengths, use of valuable pigments, biofuel production,
		downstream processing
	Hazards	In production process
	Harvest	Quality, timing, techniques etc. concerning the
		harvest, particularly when upscaling, stocking density
	Production	Amount of produced biomass, production speed, use
		of new farming methods (e.g. rafts) and associated
		growth rates, life cycle emissions, attachment
		mechanisms, influence of depth on growth rates,
		influences on nitrate/ phosphate uptake/ limitations,
		monitoring of carrageenan content using satellites,
		biofiltration potential, optimum light exposure.
		Effects of low water movement, need for longer
		experimental periods. Need for larger size of
		experiments (spatial and temporal), N/P global
		uptakes. Offshore farm design. Optimisation of
		aeration regimes (as in Nursery section).
	Product quality	Greater knowledge on carrageenan chemistry
	Training	Seed selection criteria

	Technology	New technology - effectiveness, use of land/ sea based IMTA systems, new seeding techniques testing, new species, floating longlines, potential of secondary organisms in process. Energy saving processing (by-product extraction), improving growth in low nutrient environments, effectiveness of depth-cycling to increase nutrient availability/
		prevent thermal stress, bioprospecting
Political	ABS	Access benefit sharing
	Dependence	Close relation/ connection to other topics, e.g. wind
		parks
	Support	Need to develop policies to guide markets
Social	Gender	Gender inequality observed, need for support
		mechanisms for access to information, resources,
		services, input to shaping risk assessments
	Jobs	Jobs connected with SA, creation of jobs for fishing
		communities
	Stakeholder	Stakeholder perception, acceptability, development
		strategies, site selection, impacts on communities,
		communication and Knowledge transfer
	Occupational	Farmer safety - issues and solutions
	Health	
	Coping with	Adaptive strategies for seaweed farming
	climate change	communities to cope with climate change
Legal	Governance	Governance (e.g. co-location of seaweed farms with
		offshore wind), spatial planning, biosecurity,
		international framework for biosecurity required,
		need to establish rules on verification of air-sea CO2
		flux and permanence of carbon storage, lack of
		policies specific to seaweeds (e.g. no list of specific
		diseases/ pathogens)
	Contaminant	Regulations on contaminant levels (e.g., bacteria)
	limits	

2145