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1. GLOSSARY 

Term Definition Key References 

Ecosystem services 
In CICES ecosystem services 

are defined as the 

contributions that 

ecosystems make to human 

well-being, and distinct from 

the goods and benefits that 

people subsequently derive 

from them 

www.cices.eu; Haines-Young, 

R. & M.B. Potschin, 2018 

Land-based cultivation cultivation of macroalgae on 
land 

 

Transitional  cultivation of macroalgae in 
estuarine or brackish waters 

 

Near-shore, sheltered cultivation of macroalgae in 

marine waters <50m water 

depth & <3 nautical miles 

distance to shore 

Bak et al. (2020) 
 

Near-shore, exposed cultivation of macroalgae in 

marine waters >50 meters 

depth & <3 nautical miles from 

shore 

Bak et al. (2020) 

Offshore >3 nautical miles from shore Bak et al. (2020) 

Green Deal  https://ec.europa.eu/info/stra
tegy/priorities-2019-
2024/european-green-
deal_en 

European Blue Bioeconomy  https://ec.europa.eu/info/rese
arch-and-
innovation/research-
area/environment/bioeconom
y/blue-bioeconomy_en 

Blue-Growth  https://s3platform.jrc.ec.euro
pa.eu/blue-growth 

http://www.cices.eu/
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Trade-offs A situation in which you 
balance two opposing 
situations or qualities 

https://dictionary.cambridge.
org/pt/dicionario/ingles/trade
-off 

Blue Carbon  https://www.iucn.org/resource
s/issues-briefs/blue-carboN 

EMFF European Maritime and 
Fisheries Fund 

https://ec.europa.eu/oceans-
and-
fisheries/funding/european-
maritime-and-fisheries-fund-
emff_en 
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2. BACKGROUND AND OBJECTIVES 1 

There is growing awareness of and interest in the potential of macroalgae present in 2 

coastal ecosystems, including cultivation, to provide a wide range of solutions and 3 

mitigations to anthropogenically-induced problems. There is strong evidence that 4 

macroalgae aquaculture can potentially mitigate climate change (e.g. via uptake of carbon 5 

dioxide), protect coastlines, reduce local biodiversity loss, improve water quality, among 6 

other ecosystem services. Nevertheless, there are still many constraints and knowledge 7 

gaps that need to be overcome, as well as potential negative impacts or scale-dependent 8 

effects (e.g. farm size or type of aquaculture) that need to be considered before 9 

macroalgae cultivation in Europe can grow successfully and sustainably.   10 

This Eklipse request for knowledge synthesis (CfR.5/2020/1) aims to explore and map 11 

existing knowledge and identify knowledge gaps and trade-offs, to inform future 12 

development of macroalgae culture strategies and policies. Furthermore, more knowledge 13 

is needed to evaluate impacts in terms of water, energy, land and sea use, changes in 14 

sedimentation rates and structure of local ecological communities, potential pollution and 15 

risk of releasing non-native invasive species into the environment. This additional 16 

knowledge can contribute to the development, promotion and implementation of 17 

adequate and timely policy frameworks.  18 

The requester, DG Maritime Affairs & Fisheries, Unit for Maritime Innovation, Marine 19 

Knowledge (DG MARE), is contemplating the development of an EU Algae Strategy. This 20 

strategy will take into consideration the multiple areas where macroalgae cultivation can 21 

contribute to the Green Deal as well as the importance of the overall algae sector for the 22 

development of a sustainable European Blue Bio-economy. The successful development 23 

of this strategy requires that the knowledge gaps, constraints, and potential negative 24 

impacts related to macroalgae cultivation are identified in order to advise, through DG 25 

MARE, the development of relevant research activities under the next EMFF and Horizon 26 

Europe programmes. Therefore, the requester posed the following questions:  27 

- What is the state of knowledge regarding the potential of macroalgae culture 28 

in providing climate-related and other ecosystem services?  29 

- Are there specific knowledge gaps to be addressed before harvesting this 30 

potential?   31 

To answer these primary questions, the Expert Working Group (EWG) on Macroalgae was 32 

established. The EWG has been meeting remotely weekly since February 22nd, 2021. The 33 

EWG received an introduction to the Eklipse call, a presentation on the requests and needs 34 

of the requester and the accompanying Document of Work, and a summary of the available 35 

methods by the Methods Expert Group (MEG). The EWG then selected four co-chairs to 36 

lead the subsequent meetings. After several discussions with the MEG, the EWG agreed 37 

on the methods to be used and was organised into two groups, with each group focusing 38 

on one of the two chosen methods. The details on the choice of methodology and 39 

expected outcomes are described below.  40 

3. METHODOLOGICAL FRAMEWORK 41 
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To achieve the objectives formulated above, a combination of the following two methods 42 

was followed: A Multiple Expert Consultation with Delphi Process and a Quick Scoping 43 

Review (QSR). These methods were conducted in parallel, rather than sequentially. A first 44 

round of questions was sent to selected experts as part of the Delphi Process, and then 45 

the EWG proceeded with the QSR. The use of the two methods helped to provide a more 46 

comprehensive answer to the request than the use of a single method, as shown in Table 47 

1.  48 

Table 1: Relationships between the request objectives and proposed knowledge synthesis 49 
methods.  50 

Questions  Quick Scoping Review  Delphi Process 

What is the state 

of knowledge? 

● Provides synthesis of 

relevant literature  

● Generates knowledge 

base to hold against 

results from Delphi 

● Identify and prioritise ecosystem 

services considered relevant   

● Identify constraints for up-scaling  

● Identify trade-offs and  negative 

impacts 

Are there specific  

knowledge gaps? 

● Evident if no literature 

is found in targeted   

areas of interests 

● Collects expert opinions on 

knowledge gaps  

● Formulate pathways to fill  these 

gaps 

The QSR focused on peer-reviewed literature, and the Delphi process captured the most 51 

recent and up-to-date views of experts from key sectors, including science, business and 52 

NGOs. Therefore, while QSR provides a robust view on published literature and evidence, 53 

Delphi covers views of not only scientists, but also other societal actors with practical and 54 

experience-based knowledge on the key issues in macroalgae cultivation.  55 

To analyse the outcome of both approaches we adopted the PESTEL approach (Basu 56 

2004), classifying the papers according to external key factors (Environmental, Technical, 57 

Economic, Political, Social, Legal). Ecosystem services (ES) were categorised based on the 58 

CICES 5.1 classification (Haines-Young and Potschin-Young 2018).  59 

4. DELPHI 60 

4.1. METHODOLOGY 61 

The Delphi process is an iterative technique for collecting information using expert 62 

consultation in a structured manner in order to produce forecasts and evaluate complex 63 

problems. This method was originally described by Dalkey and Helmer (1963) and has since 64 

then been adapted to the fields of ecology and biology (Mukherjee et al. 2015) and many 65 

others. Because of the iterative and controlled nature of the process, which remains 66 

anonymous, it is a rigorous approach to eliciting expert knowledge. The main benefits of 67 

using the Delphi Process are that it is relatively rapid and low cost, rigorous, repeatable 68 
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and transparent. The drawbacks of the method are that it can be time consuming for the 69 

experts and there can be some bias from experts with strong opinions, if this is not 70 

managed carefully.  71 

4.1.1. ADAPTING THE DELPHI METHOD FOR THIS ASSIGNMENT 72 

The Delphi process was adapted to address the questions raised by the EWG on 73 

macroalgae cultivation. We identified at least 130 experts from 40 countries, 15 of which 74 

were EU countries, to participate in three rounds of questioning. The geographic 75 

distribution of experts was global but considering that the requester is interested in 76 

knowledge gaps surrounding macroalgae cultivation in Europe, the EWG agreed on 77 

including approximately 70% of the experts from Europe and 30% of the experts from 78 

elsewhere throughout the world. The experts invited were a mix of representatives from 79 

academia, industry, and organisations with particular interest in the marine environment, 80 

such as private environmental organisations or other stakeholders (tourism, fisheries, etc.). 81 

It was decided to aim for an approximate ratio of 3:3:2:2 representation from academia, 82 

industry, NGOs, and other marine organisations, respectively.  83 

The work document prepared for the Delphi Process is presented in Annex 1. In addition 84 

to a general introduction and the actual questions for round 1, it also includes a set of 85 

background questions. These sections were created to facilitate the interpretation of the 86 

results and, if needed, to allow the implementation of selection criteria, which could be 87 

considered necessary to comply with the agreed balance between regions and between 88 

activity sectors.  89 

The first round of the Delphi process adopted open questions, very much aligned with the 90 

questions provided by the Document of Work for the Macroalgae culture request 91 

(February 2021).   92 

The first round of questions used to assess expert opinions using the Delphi process was 93 

sent out to 104 experts from academia, industry, NGOs and other marine organisations. 94 

We received responses from 22 participants. Their responses were analysed and 95 

consolidated into a revised questionnaire for the second round of expert opinions.  96 

For the second round of the Delphi process, we provided a list of Ecosystem Services, 97 

knowledge gaps, and negative impacts or trade-offs identified in the first round and asked 98 

the respondents to rank them in order of importance or severity (see Annex 1 for specific 99 

questions used in the second round). We received responses from six experts in the 100 

second round. The results obtained from the Delphi process are presented below.  101 

Even though the initial methodology planned for three rounds in the Delphi process, after 102 

the first round, the EWG experts decided, based on the low response (6% after 2 rounds), 103 

that two rounds were enough. This decision was also validated by the Eklipse methods 104 

experts, considering the results from the first round, the planned questions for the second 105 

round and the time frame available.  106 

4.2. RESULTS  107 

4.2.1. CHARACTERIZATION OF RESPONDENTS 108 
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The majority of responses to the first questionnaire were from representatives of 109 

academia or research (Fig. 1). Only four respondents were representatives from industry, 110 

and only single responses were obtained from NGOs, professional associations or 111 

international organisations. Among experts from academia and industry, the most dominant 112 

focus areas fell into the categories of macroalgae cultivation, macroalgae 113 

hatchery/nursery, and macroalgae processing (38%, 28%, and 18%, respectively; Fig. 2). 114 

Combined, these focus areas accounted for 84% of the responses. Only 5% of experts 115 

focused on marketing and sales, while focus areas such as macroalgae genetic 116 

characterization and breeding, education, management and conservation of brown algae, 117 

kelp forest studies, seaweed diversity/phylogeography, macroalgae diversity, macroalgae 118 

genetics, macroalgae horticulture, were represented by only 2.5% of participants. Over 119 

40% of experts in the first round of the Delphi process were from Europe, but a global 120 

representation was present among the participants (Fig. 3). Nearly half of the experts had 121 

expertise in near-shore seaweed cultivation (either sheltered or exposed), while 21% had 122 

expertise in land-based cultivation and 15% had experience in offshore cultivation (Fig. 4). 123 

Very few experts had experience in cultivation in ponds or in transitional waters. 124 

 125 

Fig. 1 Distribution of experts in the different sectors related to seaweed cultivation that responded 126 

to the first round of the Delphi questionnaire  127 
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128 

Fig. 2 Focus areas of experts from academia and industry that responded to the Delphi questionnaire 129 

 130 

Fig. 3 Regional distribution of experts that participated in the Delphi questionnaire 131 
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 132 

Fig. 4 Distribution of work experience in terms of types of seaweed cultivation among experts that 133 

participated in the Delphi questionnaire 134 

4.3. MAIN ECOSYSTEMS SERVICES IDENTIFIED BY THE DELPHI RESPONDENTS 135 

According to the responses of the Delphi questionnaire, 85 % of Ecosystem Services (ES) 136 

identified by the experts for seaweed cultivation fell within the “Regulation and 137 

Maintenance” category, based on the CICES 5.1 Classification (Fig.5). Only 12% of ES 138 

identified were classified in the “Provisioning” category, and 3% were classified as 139 

“Cultural”.  140 

 141 
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Fig. 5 Overview of relevant ecosystem services (general categories based on the CICES 5.1 142 

classification) according to the expert responses to the Delphi questionnaire  143 

A further breakdown of the responses (Fig.6), still using CICES 5.1 classification, shows that 144 

the most referred ES provided by seaweed cultivation belong to the following classes: 145 

“Regulation of chemical composition of atmosphere and oceans (code 2.2.6.1) ” and 146 

“Filtration/ sequestration/ storage/ accumulation by microorganisms, algae, plants, and 147 

animals (code 2.1.1.2)” both with 17%, followed by “Maintaining nursery populations and 148 

habitats, including gene pool protection (code 2.2.2.3) with 13%. 149 

150 

Fig.6 Overview of specific ecosystem services provided by seaweed cultivation  according to the 151 

expert responses to the Delphi questionnaire. Numeric codes correspond to CICES 5.1 Classification 152 

, as follows, Section (Class): 1.1.2.1 - Provisioning (Fibres and other materials from cultivated plants, 153 

fungi, algae and bacteria for direct use or processing  (excluding genetic materials); 1.1.1.3 -  154 

Provisioning (Cultivated plants (including fungi, algae) grown as a source of  energy); 2.1.1.2 - 155 

Regulating & Maintenance (Filtration/sequestration/storage/accumulation by microorganisms, algae, 156 

plants, and animals); 2.2.1.3 - Regulating & Maintenance (Hydrological cycle and water flow regulation 157 

(Including flood control, and coastal protection); 2.2.6.1 - Regulating & Maintenance (Regulation of 158 

chemical composition of atmosphere and oceans); 2.2.2.3 - Regulating & Maintenance (Maintaining 159 

nursery populations and habitats (Including gene pool protection)); 2.2.3.1 -Regulating & Maintenance 160 

(Pest control (including invasive species)); 3.1.2.2 - Cultural (Characteristics of living systems that 161 

enable education and training); 3.2.1.3 - Cultural (Elements of living systems used for entertainment 162 

or representation). 163 

During the second round of the Delphi process, in reply to Question 1, it was then asked to 164 

rank the top 5 ecosystem services: “From the list of Ecosystem Goods and Services (ES) 165 

presented below, please select the 5 that you feel are most important and rank them from 166 

1 to 5, where 1 is the most important and 5 is the least important of the options selected”. 167 
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The average ranking is presented below (Table 2), whereas a higher score indicates higher 168 

importance. These results confirm only partially those of the first round. In fact, while in 169 

the first round the most referred ES were within the “Regulating & Maintenance” (85%) 170 

category, in the second round the most important ES related to “Provisioning” (in 2 of the 171 

top 3). ES such as recreation and tourism, education and training, and coastal protection 172 

were ranked as the least important by the experts (Table 2). 173 

 174 

Table 2: Average scores of the ES, for Question 1, ranked from higher to lower importance, according 175 

to the respondents selected option. Individual ranking was set from 1 to 5, whereas higher score 176 

indicates higher importance. 177 

Ecosystem service Average 

score 

Macroalgae grown for food (including hydrocolloids) 3.8 

Regulation of water quality (including eutrophication, bio- mitigation, 

bioremediation) 

3.2 

Macroalgae grown for feed 2.7 

Maintaining nursery populations and habitats (including gene pool 

protection) 

2.0 

Carbon sequestration/storage/accumulation by macroalgae 1.3 

Climate regulation (CO2, carbon cycle, DMS, other) 1.3 

Macroalgae grown as a source of energy 0.5 

Pest and disease control 0.2 

Coastal protection (erosion, wave reduction, flood control) 0.0 

Characteristics of living systems that enable education and training 0.0 

Elements of living systems used for recreation and tourism 0.0 
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4.3.1. CONSTRAINTS IDENTIFIED BY THE DELPHI RESPONDENTS  178 

Participants also responded to the question regarding the main constraints that need to 179 

be resolved before upscale significantly macroalgae cultures. The responses from the first 180 

round were grouped according to the PESTEL analysis (Fig. 7). Three categories equally 181 

stand out: legal (e.g. safety regulations), economic (e.g. lack of demand for seaweeds in 182 

many countries) and technological (e.g. production in large scales) and represented almost 183 

70% of the total. According to the responses received, the less important constraints were 184 

related to social and environmental issues, representing 9,6% and 7,7%, respectively, of 185 

the total identified. Political constraints (e.g. political development and permitting) were 186 

identified in eight responses and represented 15,4% of the total. 187 

 188 

Fig.7 Distribution of constraints identified during the first round of the Delphi process among the 189 

PESTEL categories. 190 

4.3.2. NEGATIVE IMPACTS ACCORDING TO DELPHI RESPONDENTS 191 

When asked what negative impacts or trade-offs upscaling macro-algae cultivation may 192 

lead to, particularly when it comes to ES, experts provided diverse responses, which are 193 

summarised below in Table 3. 194 

 195 

Table 3 Clustering of examples of potential negative impacts or trade-offs of seaweed cultivation 196 

provided by experts that participated in the first round of the Delphi questionnaire. 197 

Negative impacts provided by experts 
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Excessive nutrients removal (e.g. compromising other ecosystem functioning, impacting 

the food web) 

Carbon capture (e.g. excessive removal and impact on final destination, such as sinking) 

Destruction of habitats (e. g. shading; clearing up the seafloor using anchor/stakes) 

Decrease species diversity/biodiversity 

Spreading diseases and pests 

Impacts on tourism (e.g. plastics, casted biomass, visual impact, etc.)  

Decrease water quality (e.g. pollution during farming operations, materials, debris, etc.) 

In the second round of the Delphi process, the participants were asked to rank the 198 

negative impacts: “From the list of negative impacts or trade-offs that may result from 199 

upscaling of macroalgae cultivation (as identified in the previous round of questions) please 200 

select the five that you feel are most critical and rank them from 1 to 5, where 1 is likely to 201 

be the most severe and 5 is likely to be the least severe of the options selected”. 202 

The weighted scores associated with each impact show that ‘Conflict with other 203 

users/uses’ was the most important negative impact of macroalgae cultivation, identified 204 

by the experts, followed by ‘Unknown environmental impacts’ (Table 4). Physical damage 205 

(resulting from the farm structure) and reduction of water flow were ranked as the least 206 

important (Table 4). 207 

 208 

Table 4: Negative impacts, identified by the experts during the first round of the Delphi process and 209 

ranked during the second round 210 

Potential negative impact or trade-off Average score 

Conflict with other users/uses (at land or sea) 3.17 

Unknown environmental impacts (e.g., on deep sea, benthic and 

pelagic ecosystems) 

2.50 

Mismatch in supply and demand of biomass 2.00 

Shifts in seaweed genetic diversity 2.00 

Pollution (e.g., plastics) 1.50 

Negative impacts on ecosystem biodiversity 0.83 

Aesthetics 0.83 
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Over exploitation of the environment 0.83 

Water flow reduction 0.67 

Physical damage (e.g., damage to the sea floor resulting from the 

farming structures, anchors, stakes, etc.) 

0.67 

4.3.3. MAIN KNOWLEDGE GAPS ACCORDING TO DELPHI RESPONDENTS 211 

In reply to the question: “What are the knowledge gaps on macroalgae cultivation (e.g., 212 

processing and marketing), that would need to be addressed in order to upscale it and 213 

enhance its delivery of ES?”, the respondents to the questionnaire mentioned a number of 214 

topics, which the EWG grouped into categories listed in Table 5. It should be noted that 215 

the provided answers were often not formulated as a knowledge gap; instead, the experts 216 

mentioned one or more terms related to a knowledge. The EWG have refrained from 217 

reformulating the answers, to avoid incorrect interpretation. All knowledge gaps, or hints 218 

at knowledge gaps, were categorised using the PESTEL framework in Table 5. The results 219 

presented in Fig. 8 show that the highest number of knowledge gaps identified by the 220 

experts fell within the ‘Technological’ category, followed by ‘Economic’.  221 

 222 

Table 5: Knowledge gaps identified during the first round of the Delphi process, with associated 223 

PESTEL category and count (number of experts that identified each specific knowledge gap).  224 

Term related to a knowledge gap  PESTEL 

Category 

Total 

counts 

Biofouling (1), Density (1), Drying/stability/pre-processing (4), 

Consistent production quality (2), Strain improvement for 

quality and consistency (2, Farming technology (1), Year-

round crop to enable uptake of nutrients and achieve a 

stable secondary ecosystem around fish farms (1), 

Mechanization (1), Land-based cultivation (1), Evaluate near- 

and offshore farm grounds (1),  

Technological 15 

Suitable price (1), Transparency market prices (1), Business 

case (2), Upscaling of farms to km2 size (1), Production in 

large-scale (2), Moving offshore for more space (1), Detailed 

market information (1) 

Economic 9 

CO2 credits, Biodiversity credits (1), Change politics (1), Set 

standards for heavy metal maximum values (1), Mechanisms 

for valorisation of ecosystem services (1) 

Political 4 
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Ecosystem carrying capacity (3), Insight into scale-effects 

(1),  

Environmental 4 

Training of young scientists (1), Direct links between farmers 

and processors (1) 

Social 2 

 225 

 226 

Fig.8 Knowledge gaps identified during the first round of the Delphi process grouped by PESTEL 227 

categories (as in Table 5). Note that there is no knowledge gap related to the legal category. 228 

 229 

In the second round, the participants were asked to rank the knowledge gaps based on 230 

importance: “From the list of knowledge gaps presented below, please select the five that 231 

you feel are most important and rank them from 1 to 5, where 1 is the most important and 232 

5 is the least important of the options selected”. 233 

The weighted scores of knowledge gaps (Table 6) suggest to confirm the importance 234 

attributed to the Technological Knowledge Gaps, such as “farming technologies”, and 235 

“technologies for macroalgae processing”, followed by Market Data (including sub-236 

categories belonging to the Economics, Technological and Social divisions of a PESTEL 237 

analysis). Economic and Political aspects are the following categories of knowledge gaps 238 

and Environmental assumes less importance in the ranking according to the respondents, 239 

with ‘Training’ as the least important.  240 

 241 
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Table 6: Knowledge gaps identified during the first round and ranked during the second round of the 242 

Delphi process 243 

Knowledge gaps category Averag
e Score 

Sub-categories 

Farming technologies 2.3 Strain improvement 

Ensure consistent production 
quality 

Develop mechanisation;  
 
Technologies for further 
cultivation approaches 

Technologies for macroalgae processing 2.0  

Market data 1.67 Adequate value-chain 
connections 

Detailed market information 

Adequate price 

Economic data 1.5 Appropriate business cases 

Information on valorisation of ES 

Politics 0.8 NA 

Data obtained from “real” macroalgae 
farming 

0.8 Appropriate scale of production 

Appropriate spatial planning for 
farming sites 

Environmental data 0.3 Nutrient uptake/bioremediation 

Biodiversity impact 

Occurrence/impact of nuisance 
species 

Certification 0.3 CO2 footprint 

Food safety 

Ecosystem provisioning 

Training 0.0 NA 

 244 
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It is interesting to notice the lower importance attributed to Knowledge Gaps concerning 245 

Environmental Data, when compared to Technological and Economic knowledge. Even 246 

though the question specifically asked for knowledge gaps that could help to upscale 247 

macroalgae production and enhance its ES deliveries, and that several ES directly related 248 

to “Regulation & Maintenance” and “Provisioning”, many responses were related to 249 

knowledge gaps that can be considered in the Technological and Economic categories. 250 

In reply to the request to provide some possible means (actions and/or key players) to 251 

address critical knowledge gaps, the following suggestions were provided by the 252 

respondents:  253 

ǒ “Authorities that provide permits for farming, connecting them in the EU to 254 

harmonise the rules” 255 

ǒ “Enable large scale test sites by connecting the projects to independent 256 

institutions following the effects” 257 

ǒ “Include Lloyds to learn about the risks. De-risking in all aspects is essential for 258 

further upscaling” 259 

ǒ “Seaweed cultivation must enter the political agenda to create funds that will 260 

support farmers developing novel technologies and automation in production and 261 

processing. This will ensure consistent production quality.” 262 

ǒ “The EU should be a key player in funding research and technology specifically in 263 

addressing these knowledge gaps, both through general and industry pointed 264 

financing actions, including more COST actions.” 265 

ǒ “Totally dependent which country you live, no point providing this as state 266 

agencies, dept. of marine or Universities are responsible.” 267 

Once again, in this case the EWG decided not to rephrase the respondents' answers, in 268 

order to avoid any bias. In this case, it is worth noting that even though the main knowledge 269 

gaps are in the Technological category, many of the suggestions are related to Political 270 

issues, either through funding decisions, licensing aspects (namely country harmonisation) 271 

and planning.  272 

5. QUICK SCOPING REVIEW 273 

5.1. METHODOLOGY 274 

A Quick Scoping Review (QSR) is a systematic and objective study of evidence from 275 

scientific literature, which aims to provide an informed conclusion on the volume and 276 

characteristics of an evidence base and a synthesis of what that evidence indicates in 277 

relation to a question. In order to reduce the time and expense of production, this method 278 
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does not include a critical appraisal of the evidence. The lack of a critical appraisal limits 279 

the use of this methodology to directly inform a decision, but provides a general 280 

understanding of the evidence base, which is useful to inform general policy direction 281 

(Collins et al., 2015). In the present study, a quick scoping review was conducted (Collins et 282 

al. 2015) to identify peer-reviewed English language scientific journal articles, addressing 283 

ecosystem services provided by macroalgal cultivation. The scoping review was carried 284 

out to summarise the current state of the knowledge and identify potential constraints 285 

and knowledge gaps. For this purpose, documents were screened in three different steps 286 

(identification, screening, eligibility; Fig.9). 287 

 288 
Fig.9 Diagram showing the different steps during the quick scoping review and the number of 289 
manuscripts that were finally considered eligible. 290 

5.1.1. STEP 1 – IDENTIFICATION  291 

In the first step, we conducted a structured search of the scientific literature. A preliminary 292 

exploration of the literature, based on 5 primary keywords (Macroalgae, Seaweed, 293 

Cultivation, Farming, Aquaculture) and 11 secondary keywords (climate change, invasive 294 

species, impacts, arsenic, bromine, ecosystem services, greenhouse, value chain, 295 

biosecurity, carbon, bioremediation) using the web search engine Google Scholar resulted 296 

in 442 papers. However, a further broader search was carried out, due to concerns of 297 

potentially missing important papers, as result of keyword restrictions and the general 298 

nature of ecosystem services. Consequently, new keywords were defined, based on six 299 
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combinations of the primary terms “macroalga” and “seaweed”, and the secondary terms 300 

“cult*”, “farm*” and “aquaculture”, whereas quotation marks were used for combination and 301 

search to reduce the number of unrelated literature. The search was conducted in parallel 302 

in Scopus and Web of Science (WoS) database, on 16th June 2021.  Data was compiled in 303 

Mendeley (reference management software) and duplicates were removed using the 304 

software, resulting in a total of 1229 entries (Table 7). 305 

 306 
Table 7. Outcome of literature search of the six keywords in Scopus and Web of Science (WoS) 307 
database in June 2021. Amount of totals include data set after software and subsequent manual 308 
duplicate removal. 309 

Keyword Scopus WoS 
 

Seaweed aquaculture 136 227 
 

Seaweed farm* 363 266 
 

Seaweed cult* 620 348 
 

Macroalgae* aquaculture 15 15 
 

Macroalgae* farm* 22 18 
 

Macroalgae* cult* 103 96 
 

Total duplicates (by software check) 1259 970 
 

Total 1054  845 = 1899 =>  1229 

5.1.2. STEP 2 – SCREENING 310 

The resulting entries were sorted in an Excel spreadsheet with macros, containing 311 

information on bibliography type, author, title, DOI, publication year and abstract. All 312 

articles were sorted and screened according to formal criteria defined in an 313 

exclusion/inclusion table (Table 8 Phase 1) identifying 960 articles to be assessed in Phase 314 

2. All articles fulfilling the formal criteria of phase 1 were randomly assigned and assessed 315 

by the different experts in the working group, who decided based on title and abstract 316 

and defined criteria (Table 8 Phase 2) whether the article should be included or excluded. 317 

After Phase 2, the 381 remaining articles were assessed again following the same criteria 318 

that in Phase 2, but based on the full text, which resulted in a total of 280 articles. These 319 

280 articles provided the base of the following analytical part of the QSR and are listed in 320 
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References forming the base of the QSR. To avoid potential bias by individual decisions 321 

during Phases 2 and 3, the eligibility of each article was assessed by two experts. In case 322 

of disagreement a third expert assessment was conducted to determine if the article was 323 

eligible or not.  324 

 Table 8. Summary of exclusion and inclusion criteria used in phases 1 (formal criteria) and 325 
2 (title and abstract review) of the Quick Scoping Review 326 

 Exclusion criteria Inclusion criteria 

Phase 1: Formal criteria 

Non-English English 

Before 2000 or after 06/2021 Between 01/2000 and 06/2021 

Non original articles Peer-reviewed original articles 

Non available in SCOPUS or WoK Available in SCOPUS or WoK 

 327 

 Exclusion criteria Inclusion criteria 

Phase 2: Title and Abstract / Phase 3: Full text 

No seaweed aquaculture Seaweed aquaculture 

Laboratory experiments (<100 L) Aquaculture systems (>100 L) 

Focus on functions Focus on services 

New methodologies or products Assessment of actual services 

Weak link with seaweed aquaculture Risk & Disservices of seaweed aquaculture 

Optimization EOs techniques Spatial and temporal assessment of seaweed 

aquaculture 

Description of associated biodiversity to 

seaweed aquaculture 

Studies on the biotic interplay related to 

seaweed aquaculture 

5.1.3. PHASE II - CLASSIFICATION 328 

To provide a general insight of the volume and characteristics of the evidence found in 329 

the scientific literature, the eligible articles were classified in different categories, included 330 

as columns in the Excel spreadsheet with macros. These categories addressed the 331 

classification of the different articles, according to 1) species, 2) country, 3) scale, 4) sector, 332 

5) PESTEL analysis, 6) aquaculture type, 7) study protocol, 8) farm size; as well as their 333 
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contribution, to different ecosystem services (ES: 9) provisioning, 10) regulating and 334 

maintenance, 11) cultural; based on CICES Classification v 5.1. (Haines-Young and Potschin-335 

Young 2018). Corresponding cells were partly to be filled via pre-formulated drop-down 336 

menus to ease classification, whereas a separate specification column allowed the expert 337 

to provide additional information. For the review findings, the columns 12) knowledge gaps, 338 

13) identified constraints, 14) disservices, 15) disservices comments and 16) expert notes 339 

were also provided. An overview of all categories with corresponding subcategories are 340 

presented in Annex 2. Scientific papers selected for inclusion from Phase 1 were randomly 341 

assigned to experts of the working group and classified. A synthesis of the literature 342 

reviewed using the QSR method is presented in the following section. Results refer to QSR 343 

literature provided in the References. 344 

5.2. QUICK SCOPING REVIEW DATA SYNTHESIS 345 

The geographic regions that dominated the studies included in the QSR were Asia (30%), 346 

Europe (24%) and Oceania (23%). Fewer studies were conducted in Latin America (11%) and 347 

Africa (7%), and fewer still in North America (4%) (Fig.10). Only 3% of the studies screened 348 

conducted a global analysis of seaweed cultivation.   349 

 350 

Fig.10: Geographic regions investigated in the studies identified in the QSR 351 

Of the 280 studies reviewed in the QSR, 213 considered a total of 37 macroalgae genera 352 

comprising about 77 species. In studies focusing on European Waters, we found 17 different 353 

species, with Saccharina latissima as the most highly studied (61% of the considered 354 
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studies), followed by Laminaria digitata (13%) and Alaria esculenta (9%). Nevertheless this 355 

has to be interpreted with caution, due to potential taxonomic mismatches.  Species names 356 

were validated according to the taxonomic data base algaebase (Guiry and Guiry 2022). 357 

For analysis, the different seaweed taxa were categorised into the following six taxonomic 358 

groups:  359 

i) Porphyra/Pyropia (about three genera and four species: Pyropia sp., Porphyra umbilicalis, 360 

Neopyropia tenera, N. yezoensis). 361 

ii) Eucheumatoids (two genera comprising about three species: Eucheuma denticulatum, 362 

Kappaphycus alvarezii, K. striatus).  363 

iii) Gracilarioids (two genera comprising about 18 species:  Gracilaria birdiae, G. bursa-364 

pastoris, G. cervicornis, G. changii, G. chilensis, G. cornea, G. conferta, G. domingensis, G. 365 

edulis,  G. gracilis,  G. parvispora, G. tenuistipitata, G. textorii,  G. tikvahiae, G. 366 

vermiculophylla, Gracilariopsis chorda, G. lemaneiformis, G. longissima). 367 

iv) Ulvoids (one genus comprising about 10 species: Ulva australis, U. clathrata, U. 368 

compressa, U. intestinalis, U. lactuca,  U. ohnoi,  U. prolifera, U. pseudorotundata, U. 369 

reticulata, U. rigida).  370 

v) Kelps (order Laminariales- eight genera comprising about 11 species: Alaria esculenta, 371 

Ecklonia maxima, E. cava subsp. stolonifera, Laminaria digitata, L. farlowii, Lessonia 372 

trabeculata, Macrocystis pyrifera, Nereocystis lutkeana, Saccharina latissima, S. japonica, 373 

Undaria pinnatifida). 374 

vi) Other (21 genera about 31 species:  Anadyomene stellata, Asparagopsis armata, A. 375 

taxiformis, Blidingia sp., Caulerpa lentillifera, C.  racemosa, Chondracanthus teedei, C. 376 

chamissoi, Codium fragile, C. taylorii, Chaetomorpha sp., Cladophora sp., Derbesia 377 

tenuissima, Dictyota ciliolata, Furcellaria lumbricalis, Gayralia sp., Gelidium amansii, Hypnea 378 

musciformis, H. pseudomusciformis,  Padina australis, Palmaria palmata,  Rhizoclonium sp,  379 

Sargassum aquifolium, S. fusiforme, S. liebmannii , S. platycarpum, S. siliquosum, S. wightii, 380 

Spirogyra sp., Turbinaria conoides,  Ulothrix sp.). 381 

Figure 11 shows the number of studies from the QSR that provided data on each seaweed 382 

taxon. About one third (30.5%) of the studies focused on kelps, mainly represented by the 383 

genus Saccharina (S. latissima, S. japonica), followed by Gracilarioids (20.7%), mainly 384 

represented by the genus Gracilaria, and the Eucheumatoids (17.9%), presented by 3 385 

species, followed by the Ulvoids and Porphyra/Pyropia. Some studies did not specify a 386 

seaweed taxa, in which case they were assigned to the category “other.” 387 
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 388 

Fig.11: Percentage contribution of seaweed taxa within the literature identified in the QSR (n =213 ) 389 

5.2.1. SEAWEED FARMS 390 

The majority of studies (58%) were conducted in nearshore, sheltered waters. Land-based 391 

seaweed cultivation was represented in 12% of studies, while offshore seaweed cultivation 392 

was represented in 6% of studies and exposed, nearshore sites only represented 2% of 393 

studies reviewed in the QSR (Fig.12).  394 
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 395 

Fig.12 Overview of the types of seaweed cultivation that were identified during the Quick Scoping 396 

Review. See the Methods Section for the definition of each cultivation. 397 

In many studies (36%), the scale of the study was not reported. Among studies where the 398 

scale of seaweed cultivation was reported, 23% were on a pilot scale, 18% were considered 399 

large,15% were considered small, and 8% were considered  intermediate scale (Fig.13).400 

 401 

Fig.13 Overview of the scales of seaweed cultivation identified during the Quick Scoping Review 402 

(n=280). See the Methods Section for the definition of each scale. 403 
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5.2.2. ECOSYSTEM SERVICES 404 

Ecosystem Service Classification 405 

The QSR resulted in 214 studies giving evidence of ecosystem services provided by 406 

seaweed cultivation. Please note that in some studies evidence for more than one 407 

ecosystem services were found. ‘Provisioning’ (49%) and ‘Regulation and Maintenance’ 408 

(45%) services were identified as the two main categories of ecosystem services provided 409 

by seaweed cultivation, but cultural ecosystem services were also represented (Fig.14).  410 

 411 

Fig.14 Overview of the number of studies identified through the Quick Scoping Review that provided 412 

evidence of ecosystem services provided by seaweed cultivation based on the CICES classification. 413 

Within the ‘Provisioning’ services classification, biomass was the most common (36%) 414 

ecosystem service provided by seaweed cultivation, followed by hydrocolloids (30%), food 415 

(28%), and lastly feed (6%; Fig.15).  416 
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 417 

Fig.15 Overview of the types of Provisional Services provided by seaweed cultivation and the number 418 

of associated studies based on the Quick Scoping Review. 419 

The QSR showed that the ecosystem service most often provided by seaweed cultivation 420 

within the ‘Regulation and Maintenance’ classification was water quality improvement. The 421 

QSR also identified studies (31%) that provided evidence of diverse types of biological 422 

regulation and climate regulation (16%; Fig.16).  423 

 424 
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Fig.16 Overview of the types of Regulating and Maintenance Services provided by seaweed 425 

cultivation and the number of associated studies based on the Quick Scoping Review. 426 

Results of the QSR showed that the ‘Cultural’ services provided by seaweed cultivation 427 

include education and learning, recreation and tourism and social welfare (Fig.17). The 428 

educational/learning aspect of seaweed culture has provided a viable livelihood source in 429 

marginalised coastal communities of countries such  as the Philippines, India or Indonesia 430 

(269, 273, 105). The activity can promote inclusiveness and gender equality and the studies 431 

have pointed out increased awareness to conserve coastal ecosystems. However, there 432 

are also constraints (e. g. marketing limitations, farm ownership, climatic risks) to further 433 

develop seaweed farming industries. Some of these constraints can be successfully 434 

overcome with the help of specific training workshops and technical guidance (195). 435 

Seaweed farming has also been perceived as a tourism product in developing countries 436 

(103) to enhance the socioeconomic status of the community. Macroalgae culture  can 437 

have social meaning beyond the economic activity in coastal communities, particularly 438 

when the activity dignifies the role of women in society (43). Evidence of seaweed 439 

cultivation providing the ecosystem services of scientific knowledge and symbolic 440 

aesthetics could only be found in single studies, suggesting that more studies are needed 441 

to assess the cultural ecosystem services provided by seaweed cultivation.  442 

 443 

Fig.17 Overview of the types of Cultural Services provided by seaweed cultivation and the number 444 

of associated studies based on the Quick Scoping Review. 445 

Analysis of the ecosystem services provided by seaweed taxa (Fig.18) showed that kelp, as 446 

well as the Gracillariods and the Ulvoids, as strongest represented taxa, were mainly 447 
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considered to regulate water quality (29%, 42% and 41% of total ES, respectively), besides 448 

providing food and biomass used for other purposes, whereas the Eucheumatoids were 449 

mainly considered for hydrocolloid production (45% of total ES) . 450 

This suggests that the different groups of taxa seem to provide different ecosystem 451 

services in different proportions, and therefore a monoculture on a large-scale would not 452 

provide the greatest amount and diversity of ecosystem services. Rather, a combination 453 

of different species grown at  scale could provide the greatest diversity and number of 454 

ecosystem services in Europe. 455 

 456 

Fig.18 Ecosystem services (classification and service type) provided by different groups of seaweed 457 

taxa based on results from the QSR. The x-axis shows the number of studies that showed evidence 458 

of ecosystem services provided by each taxa.  459 

Ecosystem Services and the United Nations Sustainability Goals 460 

If the variety of ecosystem services provided by seaweed cultivation based on the results 461 

of the QSR are considered within the context of the United Nations Sustainable 462 

Development Goals (UN 2015), it is evident that many of the UN SDGs are addressed by 463 

seaweed cultivation (Fig.19). Most notably, goals 14 (life below water), 11 (sustainable cities 464 

and communities) and 12 (responsible production and consumption) are most often 465 

addressed by seaweed cultivation.  More specifically, seaweed cultivation contributes to 466 

the target to prevent and significantly reduce marine pollution of all kinds, in particular 467 

from land-based activities, including marine debris and nutrient pollution and to increase 468 

scientific knowledge, develop research capacity and transfer marine technology within 469 
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SDG 14. The bioremediation services provided by seaweeds also closely link to SDG 6 470 

(clean water and sanitation), considering the interconnections between marine, estuarine 471 

and fresh-water systems and that bioremediation of marine waters can contribute to 472 

sustainable management of water resources and supplying access to safe water and hence 473 

unlocking economic growth and productivity. The target to protect the world's cultural 474 

and natural heritage via sustainable tourism within SDG 11 is also addressed. Additionally, 475 

seaweed cultivation can contribute to goals 2 (zero hunger), 3 (good health and well-being), 476 

7 (affordable and clean energy), 10 (reduced inequalities), and 13 (climate action). Even the 477 

collaboration and efforts by the EWG for this request, including sharing knowledge and 478 

expertise, can be considered a contribution to global partnerships and sustainable 479 

development (SDG 17, target 17.16). 480 

 481 

Fig.19 Relationship between each type of ecosystem service provided by seaweed cultivation (inner 482 

pie chart) and the related United Nations Sustainable Development Goals (UNSDGs; UN 2015; outer 483 

doughnut. The inner pie chart shows the number of studies from the QSR that showed evidence that 484 

the named ecosystem service is provided by seaweed cultivation. The ecosystem services are 485 

colour-coded according to the CICES classification (Provisioning, Regulating and Maintenance or 486 

Culture Services). The outer doughnut shows the UNSDGs that are addressed by the associated 487 

ecosystem services provided by seaweed cultivation. The UNSDGs are colour-coded according to 488 

the original UNSDG logo and the goal numbers are shown, except in cases where the doughnut slice 489 

is too small (2- zero hunger, 3- good health and well-being, 4 - quality education, 7 - affordable and 490 

clean energy, 10-reduced inequalities, 11-sustainable cities, 12-responsible consumption and 491 

production, 13-climate action, 14-life below water).  492 
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5.2.3. CONSTRAINTS 493 

Within the analysed 280 studies, 143 (51%) studies identified a large number of constraints, 494 

which were classified within the different PESTEL categories related to seaweed culture. 495 

In addition, a further group (‘Study’) was identified to classify papers (35, equivalent to 496 

12.4%) presenting constraints and weaknesses in their study design, such as limited length 497 

and scale of experiments/investigations and/or limitations in the modelling/statistical 498 

approach adopted (Annex 3).    499 

Main Constraints. As shown in Fig.20, the key groups of constraint identified in the studies 500 

were environmental (40.4%) and technical (34.9%) , followed by constraints in the 501 

economic, social and political spheres. These different subcategories will be analysed in 502 

more detail below. 503 

 504 

Fig.20 Classification of papers by constraint categories as described in Annex 3 505 

Environmental constraints (Fig.21). Within the environmental constraints, nuisance species 506 

were the most dominant group (27.6%), comprising organisms, growing either epiphytic on 507 

the fronds of cultivated species (e.g. 191, 129) decreasing their value (e.g. by encrustations); 508 

or attached on cultivation structures, forming blooms under favourable conditions, 509 

competing for light and nutrients (e.g. 55). This subgroup includes studies on associated 510 

planktonic microalgae (e.g. 31) as well as studies on different pathogens causing diseases 511 

(e.g. ice-ice disease) strongly affecting the harvest quality and quantity (e.g. 18). As second 512 

important environmental constraints water conditions (24.1%) were identified, in which 513 

elevated nutrient concentrations play a crucial role in increasing algal growth (e.g. 277, 514 
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258), whereas sewage from cities may also contribute pollutants, which can negatively 515 

affect quality and production in seaweed farms (e.g. 275). Consequently, ambient water 516 

quality is a crucial criterion for seaweed farm site selection (e.g. 29, 210). As third identified 517 

constraint seasonality (17.2%) is listed, due to the importance of different seasonal driven 518 

changes (e.g. water temperature, light, nutrient availability), affecting the growth and 519 

chemistry of cultivated macroalgae (e.g. 65, 230). Whereas next to abiotic also changes in 520 

biotic factors strongly interact with the growing bioresource, e.g. seasonal phytoplankton 521 

blooms (e.g. 255, 99). In addition, the presence of seaweed stocks affects the local fauna, 522 

which finds a temporarily limited shelter and habitat in the farms (e.g. 249, 92). Further 523 

information on the other subgroups can be found in Annex 3. 524 

 525 

Fig.21 Overview of different environmental constraints as described in Annex 3 526 

Technical constraints (Fig.22). ‘Technology’ and ‘Production’ combined accounted for 527 

approximately half of the technical constraints identified (28% and 24% respectively). 528 

Examples of ‘Technology’ constraints include difficulties in implementing artificial upwelling 529 

to provide nutrients to seaweed farms (e.g. 57) and seaweed production at large scale (e.g 530 

58); need of developments in the production of low carbon seaweed ethanol (e.g. 109) and 531 

mechanisation of farming (e.g. 175). Technical constraints relevant to ‘Production’ included 532 

nitrate uptake and inhibition in seaweed (e.g. 200), investigations on the potential nutrient 533 

bio-mitigation capacity of seaweed farms, also in IMTA contexts (e.g. 112, 243). Constraints 534 

around technical aspects at the nursery stage were identified in 16% of the papers 535 

considered; these included strain selection (e.g. 185), intraspecific crossing between 536 

seaweed species (e.g. 276), nutrient uptake in tanks prior deployment of seaweed at sea 537 
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(e.g. 87). Technical constraints in the context of product quality and post-harvest 538 

procedures and infrastructures were reported in approximately 10% of the papers each. 539 

Brief description of the other subcategories can be found in Annex 3.  540 

 541 

Fig.22 Overview of different technical constraints as described in Annex 3 542 

5.2.4. NEGATIVE IMPACTS/RISKS 543 

The majority (212) of the papers reviewed did not identify negative impacts or risks 544 

(Fig.23).  545 

Among those that did report negative impacts or risks, environmental impacts were of the 546 

highest concern. Examples of potential environmental impacts of seaweed aquaculture 547 

included unknown impacts on deep sea communities, impacts on benthic communities, 548 

particularly seagrass beds (however, this was mostly relevant in tropical regions and not in 549 

Europe) and competition for nutrients with pelagic ecosystems. Of second highest 550 

concern identified was the potential of seaweed aquaculture to create large-scale 551 

macroalgal blooms, as has been demonstrated by Ulva blooms in the Yellow Sea due to 552 

Pyropia cultivation. However, all papers reporting the risk of macroalgal blooms resulting 553 

from seaweed cultivation were related to the regional events that have occurred in the 554 

Yellow Sea, and to date we could find no evidence of macroalgal blooms occurring due to 555 

seaweed cultivation in Europe. Additional negative impacts identified in the reviewed 556 

papers included introduced species, disease or pest outbreak, biofouling, light attenuation, 557 

conflict with other users (e.g. wind parks), increased halocarbon production (in tropical 558 

regions), flow reduction due to seaweed farms, changes in organic matter in surface 559 
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sediments, and decreased benthic diversity. Finally, negative impacts that were placed in 560 

the “other” category were mentioned less than three times among the reviewed papers or 561 

they could not be assigned to a meaningful category. These included the following: poor 562 

acceptance of seaweed aquaculture among stakeholders due to bad experiences in other 563 

aquaculture sectors, creation of urban artificial shorelines, provision of jobs, but at the 564 

expense of farmers’ health, competition with microalgae, ammonia release from seaweeds, 565 

competition with microalgae, and sediment deposition in beach areas. Nevertheless, many 566 

of these negative impacts were potential, and only very few papers provided clear, 567 

documented evidence of direct negative impacts of seaweed aquaculture. 568 

 569 

Fig.23 Overview of different negative impacts identified in QSR 570 

5.2.5. KNOWLEDGE GAPS 571 

From the 280 studies analysed, 172 (61 %) of the studies identified knowledge gaps. These 572 

gaps were classified into seven categories relating to seaweed culture using the PESTEL 573 

framework. In addition, a further category, not applicable (‘NA’), was included, when no 574 

knowledge gaps were highlighted by the study (128 papers, equivalent to 45.7%) (Fig.24). 575 

The seven categories were further divided into 32 sub-categories and a full description of 576 

the knowledge gaps identified under each group/ sub-group can be found in Annex 4.  577 

The main categories for knowledge gaps (other than NA) with the highest percentage were 578 

identified as Technical (24.5 %) and Environmental (18.7 %), followed by the social, economic 579 

and legal categories (Fig.24).  It should be recognized that the low number of knowledge 580 
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gaps in the social category might be a reflection of the lack of studies on cultural 581 

ecosystem services provided by seaweed cultivation (see Fig.14). 582 

 583 

Fig.24 Overview of the key knowledge gaps identified through the Quick Scoping Review and 584 

classified into the eight main categories (n=280) 585 

Technical knowledge gaps. Within the technical knowledge gaps, the production sub-586 

category was by far the most dominant (47%), including how to accurately predict optimal 587 

farm size, production biomass and associated growth rates, particularly when using new 588 

farming methods (e.g., rafts) and/ or offshore locations (Fig.25). In addition, technical 589 

knowledge was highlighted as lacking in seaweed attachment mechanisms, the influence of 590 

depth, light exposure and aeration / water movement, in the nursery and on-growing 591 

phases, on growth rates and factors that influence/ limit nitrate and phosphate uptake at 592 

farm, regional and global scales. Also, the potential to monitor carrageenan content, 593 

disease outbreaks using satellites and biofiltration rates was also identified as a knowledge 594 

gap. The second most cited technical knowledge gap was identified as technology (23.5%), 595 

in which knowledge on the effectiveness of new innovative techniques at large scale, such 596 

as land/sea based IMTA systems, new seeding techniques, new species, floating longlines 597 

was identified. Knowledge gaps were also highlighted in energy saving processing (e.g., by-598 

product extraction), effectiveness of depth-cycling to increase nutrient availability and 599 

prevent thermal stress and bioprospecting. The third most commonly cited knowledge 600 

gap was technology - unclassified (10.3%), in which the specific nature of the knowledge 601 

gap was not described. Further information on the other technical sub-categories can be 602 

found in Fig.24 and Annex 4. 603 
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 604 

Fig.25 Overview of the ‘Technical’ sub-categories of knowledge gaps  identified through the Quick 605 

Scoping Review (n=68) 606 

Environmental knowledge gaps. Within the environmental knowledge gaps, wider 607 

ecosystem effects were the most dominant sub-category (29.4%), comprising the gaps in 608 

knowledge of how upscaling seaweed farms would affect adjacent coral reefs, 609 

phytoplankton and microbial communities, seagrass beds, fish assemblages, fish farms, 610 

water quality, particularly in light of the creation of novel habitats. The lack of knowledge 611 

on the effect of stocking density on the wider ecosystem and the persistence of existing 612 

ecosystem services around the cultivation site, once in operation, were also highlighted 613 

(Fig.26). The second most cited environmental knowledge gap was identified as nuisance 614 

species/ disease (25.5%), in which how to deal with encrusting or epiphytic organisms, which 615 

can affect biomass, quality and/or cultivation process were highlighted. A lack of 616 

knowledge on seaweed diseases, biofouling, harmful algal bloom formation and their 617 

mitigation measures was also identified. The third most commonly cited knowledge gap 618 

was emissions and absorption (17.6%), in terms of absorption of CO2, uptake of nutrients 619 

and release of dissolved and particulate nitrates and phosphates from large-scale seaweed 620 

farms. In addition, lack of knowledge on what the benthic and carbon footprint of these 621 

large farms would be and how this would vary dependent on the species that was being 622 

cultivated was highlighted. Further information on the other sub-categories can be found 623 

in Fig.26 and Annex 4. 624 
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 625 

Fig.26 Overview of the ‘Environmental’ sub-categories of knowledge gaps identified through the 626 

Quick Scoping Review (n=51) 627 

6. DISCUSSION 628 

6.1. REFLECTION ON THE METHODOLOGY 629 

Assessing the replies to the first and second round of the Delphi questionnaire, the 630 

following observations are made. In reply to the questions, various respondents provided 631 

a few key words, not elaborating further. Given the expertise of the working group, these 632 

answers have been processed for further analysis. However, cautious of over 633 

interpretation, the answers were not reformulated. This shows, for example, in the section 634 

on knowledge gaps where answers provided were generally not formulated as a gap. The 635 

22 answers obtained for the first round were considered satisfactory, even though they 636 

represented less than 20% of requests sent. The limited number of replies to the second 637 

round of the Delphi questionnaire is considered much more limited in terms of 638 

opportunities for analysis. 639 

In general, we received a low number of expert opinions from the questionnaire used in 640 

the Delphi process. Most of the responses were from academia and research. Very few 641 

experts were from industry, NGOs, professional and international organisations. 642 

Additionally, few experts focused on marketing and sales, macroalgae genetic 643 

characterization and breeding, education, management and conservation of brown algae, 644 
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kelp forest studies/seaweed diversity/phylogeography, and macroalgae 645 

diversity/macroalgae genetics/macroalgae horticulture. These observations suggest that 646 

in order to obtain a broader response, the different stakeholders may need to be engaged 647 

in different ways. Considering that it can be difficult to define ecosystem services and 648 

assess which of these are realistically provided by seaweed cultivation it is possible  that 649 

some of the participants  may have not been familiar with the concept of ecosystem 650 

services and how to define them. In the future, it will be necessary to take a more 651 

interdisciplinary and multi-stakeholder approach in order to reach a broader audience. 652 

Additionally, for future studies it would be important to increase the number of invitations 653 

and/or try to contact the potential respondents first, making sure they commit to be 654 

involved throughout the entire process. 655 

6.2. QUALITY OF THE COMPILED DATA SET 656 

Findings of the QSR strongly reflected that most of the studies were focused on pilot or 657 

small-scale farms, near-shore sheltered seaweed cultivation, mainly conducted in Asian and 658 

European countries. This underlies the novelty of seaweed farms in European waters, with 659 

no or limited examples of larger scale cultivation compared to other parts of the world 660 

where seaweed farms already operate at medium-large scales. It should be pointed out 661 

that there was a mismatch between the high scientific interest in seaweed cultivation in 662 

Europe (24% of scientific publications, ranked 2nd after Asia according to our QSR) and 663 

the low volume of seaweed production in Europe (<0.1% of total seaweed production; FAO 664 

2019), compared to global production. The small size of seaweed farms (pilot and small 665 

farms 38% of studies vs. medium and large farms 26%) considered in most of the scientific 666 

studies might lead to some bias that needs to be considered when interpreting the results 667 

and identifying knowledge gaps, as some processes and services can be size dependent.  668 

While assessing the papers, the expert working group identified weaknesses in 669 

experimental design or approach, analysis, and scale (both spatial and temporal), which 670 

affected about 12% of the reviewed literature.  671 

The provided data set of QSR revealed a high diversity of seaweed taxa (about 77 species) 672 

approached in cultivation, whereas only few species, mainly belonging to the kelps, were 673 

the subject of intensive study and thus baseline of the present QSR. This might bias the 674 

outcome and conclusions in some way, considering that a variety of additional 675 

species/genera are identified and are currently tested for implementation in seaweed 676 

aquaculture. Also the approach of polyculture, e.g. IMTA combining the cultivation of 677 

different taxa at the same location, could alter the received findings in future. 678 
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Although European studies dealt with 17 different species, most of the studies were 679 

focused on kelps (Saccharina latissima, Laminaria digitata and Alaria esculenta) due to their 680 

present commercial value. 681 

It must be also noted that there will probably be a time lag between the ongoing research 682 

and the results already published, as the former may not be represented in the QSR. On 683 

the other hand, as a result of the economical profitability of new applications and the 684 

patents limitations, these studies may be underrepresented in the published scientific 685 

literature. 686 

6.3. ECOSYSTEM SERVICES PROVIDED BY SEAWEED CULTIVATION 687 

While 85% of the ecosystem services provided by seaweed cultivation based on the Delphi 688 

process fell into the “Regulating and Maintenance” category, the QSR results showed 45% 689 

of studies provided evidence of “Regulating and Maintenance” services and 48.5% 690 

provided evidence of “Provisioning” services. However, in the second round of the Delphi 691 

process, when participants were asked to rank the ecosystem services in order of 692 

importance, provisioning services (e.g. food and hydrocolloids) were ranked as the most 693 

important ecosystem services. Although the ranking of the experts was not necessarily 694 

reflected in the literature, both methods identified the following top six ecosystem 695 

services provided by seaweed cultivation:  696 

1) Provisioning food,  697 

2) provisioning hydrocolloids and feed,  698 

3) regulating water quality,  699 

4) provisioning habitats,  700 

5) provisioning of nurseries and  701 

6) regulating climate.  702 

6.4. KNOWLEDGE GAPS INHIBITING SCALE-UP AND DELIVERY OF ECOSYSTEM 703 

SERVICES BY MACROALGAE CULTIVATION 704 

Diverse ‘Technological’ knowledge gaps were identified by both methods at all scales of 705 

the macroalgae cultivation process, from nurseries (e.g. strain selection, attachment 706 

effectiveness) to production and scale-up (e.g. biofiltration rates, ensuring consistent 707 

biomass/product quality, effectiveness of new technologies at scale) to processing (e.g. 708 

how to improve energy efficiency). This focus on technological knowledge gaps may result 709 

from the fact that the majority of the respondents to the Delphi questionnaire were from 710 

Europe, who generally may have less experience with seaweed cultivation at large scales.  711 
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The second most common category of knowledge gaps according to the Delphi process 712 

was ‘Economic’ (e.g. detailed market information/data, valorization of ecosystem services, 713 

carbon credits, and lack of successful business cases). In contrast, the second most 714 

common knowledge gap category identified during the QSR was ‘Environmental’ (e.g. wider 715 

ecosystem effects, nuisance species/disease, and emissions/absorption). The discrepancy 716 

in most commonly identified knowledge gaps between the two methods may be due to 717 

the fact that the economic knowledge gaps in the seaweed industry are often not 718 

reflected or reported in the scientific literature (e.g. business cases, yield costs may not 719 

be shared to protect industrial interests). 720 

Based on suggestions from the expert respondents in the Delphi process, there is a clear 721 

need for a European-wide strategy for reducing risk for seaweed producers, providing 722 

clear standards and guidelines for obtaining permits, and providing financial support to 723 

improve technological innovation that will ensure consistent quality. Furthermore, it should 724 

be noted that seaweed biomass has generally a low gross monetary value and the labour 725 

conditions associated with seaweed aquaculture to be profitable are in many cases not 726 

acceptable for the European standards and legislation. In this sense, it would be critical for 727 

the development of European seaweed aquaculture to identify high-value products and 728 

technological innovations to reduce costs in terms of work hours.  729 

An additional knowledge gap that was identified when analysing the ecosystem services 730 

provided by different taxa is that it needs to be determined if polyculture of macroalgae 731 

(using several algal species) will provide more ecosystem services than monoculture at a 732 

large scale.  733 

Despite the fact that many experts ranked climate regulation as an ecosystem service 734 

provided by macroalgae cultivation, strong evidence of this service is still lacking in the 735 

literature and there are still many open questions regarding if and how macroalgae 736 

cultivation at a large scale can sequester carbon, and the carbon balance along the 737 

production chain.  738 

6.5. MAIN CONSTRAINTS LIMITING SCALE-UP OF MACROALGAE CULTIVATION 739 

The observed discrepancies between the constraints identified during the Delphi process 740 

(mainly Political/Legal, Technological, Economic) and the QSR (mainly Environmental and 741 

Technological), might be partly explained, as mentioned above for the knowledge gaps, by 742 

the novel/developing status of the seaweed aquaculture in European waters thus it shows 743 

a prioritised need for developing a required political/legal framework and establishing 744 

appropriate farming technologies. In addition, the high cost of labour in Europe compared 745 

to other countries where seaweed cultivation is well established requires a different 746 

approach, for example by incorporating technological advances that automate and, hence, 747 
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reduce the cost of, seaweed production. Concerning the environmental constraints, the 748 

occurrence of nuisance species was the most dominant factor. This constraint is also 749 

reflected in the high number of papers that reported the occurrence of Ulva spp. blooms 750 

resulting from Pyropia sp. cultivation in the Yellow Sea as a negative impact of seaweed 751 

cultivation. Additional environmental constraints included site specific inter-environmental 752 

dynamics (e.g. seasonal appearance of nuisance species, alterations in water quality, 753 

pollution). Depending on regional water quality standards, some areas of Europe may be 754 

unsuitable for seaweed cultivation due to pollution. There are also seasonal restrictions in 755 

Europe that are not necessarily relevant in other regions where large-scale seaweed 756 

cultivation is already well established and can be carried out all year round. These seasonal 757 

restrictions limit the production period of some species, the ecosystem services that they 758 

can provide are not always present and hence the profit obtained. This reflects on the one 759 

hand the need for further investigation to understand the different abiotic and biotic 760 

factors involved and also underlines the required flexibility concerning site specific 761 

adaptations for establishing a working seaweed farm. In this context, accompanying 762 

monitoring could be a way to provide further support for the planning of new and further 763 

implementation of already established sites. 764 

6.6. POTENTIAL NEGATIVE IMPACTS OR TRADE-OFFS OF SCALING-UP MACROALGAL 765 

CULTIVATION 766 

Unknown environmental impacts to deep sea, benthic and pelagic ecosystems was one of 767 

the most commonly identified potential negative impacts of macroalgae cultivation both 768 

among the expert responses and the reviewed articles. This point is especially relevant if 769 

the goal is climate change mitigation due to the scale required and the large amount of 770 

biomass that could be entered in the deep ocean. 771 

In addition, conflicts with other users, shifts in seaweed genetic diversity, negative impacts 772 

on ecosystem biodiversity and reductions in water flow were identified as potential 773 

negative impacts of scaling-up macroalgae cultivation by both methods. Nevertheless, 774 

most negative impacts were identified as potential or unknown and few studies provided 775 

direct evidence of negative impacts of seaweed cultivation, except in cases of poor 776 

management practice (e.g. cloning, uncontrolled transport of strains between 777 

sites/regions). This underlines again the need of further, accompanying multidisciplinary 778 

approaches and transparency, considering site specific conditions and need for 779 

comparative examples. In this context the built and interlinking of interdisciplinary 780 

seaweed farmer- research networks, providing information and access to developing 781 

methodologies, as well as information on successful case studies, would provide a 782 

sustainable way to support the further developments in the seaweed cultivation sector. 783 
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7. CONCLUSIONS 784 

The present study highlights that seaweed cultivation can provide many ES to humanity. 785 

However, one of the main issues recognized during the presented study was the 786 

understanding of ES themselves by the different stakeholders. There was often no clear 787 

evidence of ES provided found in the literature and also some aspects, like cultural impact 788 

etc. were missing in the responses to the questionnaires during Delphi process. At present, 789 

there seems to be not only uncertainties in definitions, but also a lack in understanding of 790 

the potential importance of the defined ES for further development of the seaweed 791 

cultivation industry. Clear definitions of ecosystem services are required to be 792 

communicated and agreed within and among stakeholders involved in seaweed cultivation 793 

to facilitate further valorisation and analysis of ecological and economical footprint of 794 

large-scale seaweed production. In this context the presented approach combining CICES 795 

v.5 and PESTEL analysis provided a valuable tool to define and categorise ES in the 796 

seaweed cultivation sector. 797 

Most of the studies addressing ES provided by seaweed aquaculture were not 798 

comprehensive and overall focused on a few services (e.g. biomass provision, nutrient 799 

removal, biological regulation or blue carbon), while others (e.g. cultural services) were 800 

poorly represented. However, the number of studies reporting a certain service (e.g. 801 

regulating water quality) is not necessarily a direct reflection of the importance or value 802 

of that particular service. There is clearly a bias in the literature on studies investigating 803 

bioremediation of seaweeds, but very few studies provide valorisation of this service. In 804 

contrast, cultural services such as improving social welfare or gender equality are poorly 805 

represented in the literature. That is not to say that such cultural services are less valuable 806 

than water quality regulation, but such a direct comparison of the value of different 807 

ecosystem services provided by seaweed cultivation is still lacking, as it was outside the 808 

scope of this study.  809 

Relevant knowledge gaps have been identified in most of the PESTEL categories, 810 

particularly in technological, economical/social and environmental issues. Technological 811 

improvements, and the identification of valuable products and species were the main 812 

actions suggested by experts during the Delphi process in order to harness the potential 813 

of seaweed aquaculture in Europe. The lack of a clear legislation about biomass quality 814 

standards (e.g. content of heavy metals, contamination by bacteria and other compounds 815 

of potential concern for human health) and guidelines to obtain the necessary permits is 816 

another problem usually highlighted by seaweed farmers constraining the development of 817 

seaweed cultivation. In addition, only limited information about the potential consequences 818 

of climate change for macroalgae cultivation has been reported so far. Even in these cases, 819 
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the scale of aquaculture facilities was generally limited and currently there is an important 820 

uncertainty about the upscaling of the activity. It should be noted that climate and 821 

environmental conditions, and the viability of seaweed aquaculture and its provision of ES 822 

could be interrelated when seaweed aquaculture is developed at a large scale. For 823 

instance, in some regions where seaweed aquaculture has been developed at large scale, 824 

the fertilisation of coastal waters has been necessary to increase or maintain the 825 

production of seaweeds. This raises the need to control the nutrient fluxes connected with 826 

large-scale seaweed cultivation. Although there is a relevant number of studies dealing 827 

with nutrient (including carbon) removal and bioremediation, most of the studies did not 828 

consider the entire life cycle, and overall did not discuss the scale of the facilities or 829 

cultures necessary for an effective remediation. 830 

Several of the ES will be delivered only at large scale cultivation (e.g. carbon sequestration, 831 

climate regulation). At this scale of operations there could be multiple associated unknown  832 

side effects which need to be further  investigated ( e.g. pumping  deep waters to fertilise 833 

seaweed which not only bring to the surface required growth-limiting nutrients,  but also 834 

already sequestered carbon). .   835 
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ANNEX 1: WORK DOCUMENT OF THE DELPHI PROCESS 1966 

QUESTIONS SENT TO THE EXPERTS FOR THE FIRST ROUND OF THE DELPHI PROCESS 1967 

Dear Expert,  1968 

RE: Expert opinion requested to highlight knowledge gaps for enabling the 1969 

upscaling macroalgal cultivation in European waters  1970 

This questionnaire is part of ongoing work carried out under the framework of the 1971 

EKLIPSE Macroalgae expert group. This group was formed in February 2021 as a 1972 

response to a request made to Eklipse by the European Commission’s Directorate 1973 

General for Maritime Affairs & Fisheries, Unit for Maritime Innovation, Marine 1974 

Knowledge and Investment (DG MARE), following Eklipse’s fifth call for requests 1975 

(CfR.5/2020). The request was: What are the knowledge gaps to be addressed 1976 

before harvesting the potential of macroalgae culture in providing climate-related 1977 

and other ecosystem services (i.e., coastal protection; nutrient recycling; lower 1978 

impact food; lower impact material; etc.) especially at larger scales?  1979 

For the purpose of this work, we consider the definition of Ecosystem Services 1980 

as accepted by CICES (available from www.cices.eu).  1981 

With a strong focus on the identification of knowledge gaps on ecosystem 1982 

services and macro-algae cultivation, this Eklipse exercise will take into account 1983 

qualitative and quantitative data. Such assessment is needed to critically assess 1984 

the potential of upscaling macroalgae culture to serve as a solution to mitigate 1985 

climate change, enhance coastal biodiversity and provide sustainable ecosystem 1986 

services. Eklipse results are expected to inform future macroalgae research and 1987 

Commission activities, through the identification of knowledge gaps.   1988 

You are receiving this information because you were selected as an expert and/or 1989 

key stakeholder and we value your opinions on this matter. We kindly ask you to 1990 

reply to the questions below within 7 days. There is no word limit for your replies, 1991 

but we do ask you to be as specific as possible. There is no need to elaborate 1992 

your answers with justifications (such as references). We estimate that the 1993 

questionnaire will take no longer than 20 minutes to complete.  1994 

Please note that this is the first round of questions for this Delphi process and we 1995 

will be very grateful if you would be happy for us to contact you again in a few 1996 

weeks for further rounds. These next rounds may, for instance, ask you to rank 1997 

the answers given during the first round and secondly ask you to review your initial 1998 

ranking based on the overall responses provided.   1999 

To standardize the language of marine aquaculture, we propose three site 2000 

categories: “nearshore sheltered”, “nearshore exposed” and “offshore” sites, 2001 

according to Bak et al.  (2020). These categories are dependent on two site 2002 

attributes: “water depth” and “distance to shore”. The offshore site category is 2003 

reserved for sites with a distance to shore of ≥3 NM; the nearshore exposed are 2004 

sites with a water depth ≥50 m yet <3 NM from shore; finally, the nearshore 2005 



REPORT: 
MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES 

 
 

2021 | August Method Protocol 73 
 

sheltered sites are those with a water depth <50 m and <3 NM from shore.   2006 

For the following questions please specify whether your answers are applicable 2007 

to land based cultivation, transitional (e.g., estuaries) or marine waters (e.g., near 2008 

shore sheltered, near shore exposed, off shore) or common to some or all of 2009 

these.  2010 

1 – Please list the most important Ecosystem Goods and Services (ES) that 2011 

macroalgae cultivation can provide.   2012 

2 - What are the knowledge gaps on macroalgae cultivation (e.g., processing and 2013 

marketing) that would need to be addressed in order to upscale it and enhance 2014 

its delivery of ES?   2015 

3 – What are, in your opinion, the main constraints (e.g., technological, political, 2016 

economic, legal, social, environmental) that need to be resolved before 2017 

significantly upscaling macroalgae culture?   2018 

4 – What negative impacts or trade-offs may upscaling macro-algae cultivation 2019 

lead to, particularly when it comes to ES?  2020 

Background assessment of the participants    2021 

1 – Which of the following sectors do you consider most relevant to your 2022 

experience?   2023 

A) Academic/research  2024 

B) Industry (e.g., producer, processing, marketing and sales)  2025 

C) NGO (e.g., environmental)  2026 

D) Other marine organizations (e.g., political entities, professional associations, 2027 

other not included elsewhere)  2028 

 2029 

2 – If you belong to the Academic or Industry sector, on which aspect do you 2030 

focus your work:  2031 

 2032 

☐ Macroalgae hatchery/nursery  2033 

☐ Macroalgae cultivation  2034 

☐ Macroalgae processing  2035 

☐ Marketing and sales 2036 

3 – Is your work experience focused on one country or region? If yes, please specify. 2037 

☐ Asia and the Pacific:  2038 ☐ Europe:  2039 
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☐ Latin America and the 2040 
Caribbean:  2041 

☐ Near East:  2042 

☐ North America: 2043 

4 – Is your work experience particularly focused on a macroalgae species or group of 2044 

species? If so, please specify.   2045 

5 – Is your work experience focused on a specific site category from the following:  land-2046 

based cultivation, transitional (e.g., estuaries) or marine waters (near shore sheltered, near 2047 

shore exposed, off shore)   2048 

Please choose your work area (click here)  2049 

6 – How many years of work experience do you consider yourself to have? 2050 

☐ 1 – 5 years ☐ 6-20 years   2051 
☐ more than 20 years 2052 

QUESTIONS SENT TO THE EXPERTS FOR THE SECOND ROUND OF THE DELPHI PROCESS. 2053 

Dear Expert, 2054 

RE: Expert opinion requested to highlight knowledge gaps for enabling the 2055 

upscaling of macroalgal cultivation 2056 

First of all, we thank you once again for the time you spent in the previous 2057 

round of this process. Your contributions are extremely important for our 2058 

work group. 2059 

As explained in our previous message, as a follow up of the 1st round of the 2060 

Delphi process, we now ask your contribution for the second and final round. 2061 

In this stage we have only four tasks. Essentially you are asked to rank the 2062 

5 most important options listed, which are derived from all the answers 2063 

obtained in the previous round.  2064 

 1 – From the list of Ecosystem Goods and Services (ES) presented below, 2065 

please select the 5 that are most important for you and rank them from 1 2066 

to 5, where 1 is the most important and 5 is the least important of the ones 2067 

selected. This list was obtained from the answers in the previous round. 2068 

☐ Macroalgae grown for food (including hydrocolloids) 2069 

☐ Macroalgae grown for feed 2070 

  2071 
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☐ Macroalgae grown as a source of energy 2072 

☐ Regulation of Water quality (including eutrophication, biomitigation, 2073 

bioremediation) 2074 

☐ Carbon sequestration/storage/accumulation by macroalgae 2075 

☐ Climate regulation (CO2, carbon cycle, DMS, OTHER) 2076 

☐ Coastal protection (erosion, wave reduction, flood control) 2077 

☐ Maintaining nursery populations and habitats (including gene pool protection) 2078 

☐ Pest and disease control 2079 

☐ Characteristics of living systems that enable education and training 2080 

☐ Elements of living systems used for recreation and tourism 2081 

2 - From the list of knowledge gaps presented below, please select the 5 2082 

that are most important to you and rank them from 1 to 5 where 1 is the 2083 

most important and 5 is the least important of the ones selected. If you 2084 

include a category with subcategories please rank also those. 2085 

Note that these are the knowledge gaps on macroalgae cultivation that 2086 

would need to be addressed in order to upscale it and enhance its ES, 2087 

according to the answers from the previous round. 2088 

☐ Environmental Data 2089 

             Occurrence/impact of nuisance species 2090 

             Biodiversity impact 2091 

             Nutrient uptake/bioremediation 2092 

☐ Farming Technologies 2093 

             Ensure consistent production quality 2094 

Strain improvement 2095 

Technologies for further cultivation approaches 2096 

Develop mechanization for seaweed farming 2097 

☐ Technologies for macroalgae processing 2098 
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  2099 

☐ Data obtained from “real” macroalgae farming 2100 

             Appropriate scale of production 2101 

             Appropriate spatial planning for farming sites 2102 

☐ Market data 2103 

             Adequate price 2104 

             Adequate value-chain connections 2105 

             Detailed market information 2106 

☐ Economic data 2107 

             Information on valorization of Ecosystem Services 2108 

             Appropriate business cases 2109 

☐ Politics 2110 

☐ Certification 2111 

             Food Safety 2112 

             CO2 footprint 2113 

             Ecosystem provisioning 2114 

☐ Training 2115 

2.1 Please provide, in a concise manner, possible ways (tasks and/or key 2116 

players) to address those knowledge gaps. 2117 

“SPACE FOR TEXT” 2118 

 3 – From the list of negative impacts or trade-offs that macroalgae 2119 

cultivation upscaling may lead to (identified in the previous round of 2120 

questions) please select the 5 that you think are most severe and rank them 2121 

from 1 to 5, where 1 is likely to be the most severe and 5 is the least severe 2122 

of the ones selected. 2123 

☐ Conflict with other users/uses (at land or sea) 2124 

☐ Negative impacts on ecosystem biodiversity 2125 
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☐ Aesthetics 2126 

☐ Mismatch in supply and demand of biomass 2127 

☐ Unknown environmental impacts (e.g. on deep sea, benthic and pelagic 2128 

ecosystems) 2129 

☐ Over exploitation of the environment 2130 

☐ Shifts in seaweed genetic diversity 2131 

☐ Pollution (e.g. plastics) 2132 

☐ Water flow reduction 2133 

☐ Physical damage (e.g. damage to the sea floor resulting from the farming 2134 

structures, anchors, stakes, etc.)  2135 



REPORT: 
MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES 

 
 

2021 | August Method Protocol 78 
 

ANNEX 2. OVERVIEW OF DIFFERENT CATEGORIES USED FOR CLASSIFICATION OF 2136 

DIFFERENT ARTICLES SELECTED IN THE QSR  2137 

 2138 

N° Category Subcategories Explanation 

1 Species   Species or taxonomic group considered 
in the study. 

2 Country   Country, countries or geographic region 
(e.g. North Atlantic coast of Europe) 
where the study was performed 

3 Scale NA/Local/Regional/
Large/Global 

Specify study scale choosing one of the 
options 

4 Sector NA   

    All Non specified or seaweed aquaculture in 
a general sense 

    None Seaweed harvesting, seaweed as 
resource... 

    Land-based 
cultivation 

Cultivation of macroalgae on land. 

    Transitional  Cultivation of macroalgae in estuarine or 
brackish waters. 

    Near-shore, 
sheltered 

Cultivation of macroalgae in marine 
waters <50 m water depth & <3 NM 
distance to shore. 

    Near-shore, 
exposed 

Cultivation of macroalgae in marine 
waters >50 m depth & <3 NM from 
shore. 

    Offshore >3 NM from shore. 

5 PESTEL 
analysis 

NA   

    Political   

    Economic   

    Social   
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    Technical   

    Environmental   

    Legal   

6 Aquaculture 
type 

NA   

    All Non specified or seaweed aquaculture in 
a general sense. 

    None Seaweed harvesting, seaweed as 
resource... 

    Land-based 
cultivation 

Cultivation of macroalgae on land. 

    Transitional  Cultivation of macroalgae in estuarine or 
brackish waters. 

    Near-shore, 
sheltered 

Cultivation of macroalgae in marine 
waters <50 m water depth & <3 NM 
distance to shore. 

    Near-shore, 
exposed 

cultivation of macroalgae in marine 
waters >50 m depth & <3 NM from 
shore. 

    Offshore >3 NM from shore. 

7 Study protocol NA NA 

    BACI Studies considering a "Before-After-
Control-Impact" design. 

    Before-After Studies considering conditions previous 
to the installation of seaweed 
aquaculture facilities. 

    Control-Impact Studies comparing natural communities 
and seaweed crops. 

    Descriptive Descriptive or observational studies with 
no comparisons with references. 
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    Other Other studies not considering 
quantitative or qualitative analyses. 

    Modelling Studies using models to assess or 
identify ecosystem services or 
disservices. 

8 Farm size N/A not defined in the methodological part 

    Pilot  Small-scale, experimental farm to test 
feasibility  

    Small  e.g. family runned farms of villages  

    Medium  e.g. larger farming activities but not as 
extended as covering bays, regions; or 
farms with < 50 lines (x 200 m; Campbell 
et al. 2019)  

    Large  e.g. farming activities covering whole 
bays, regions, or large coastal areas; or 
farms with > 50 lines (x 200 m; Campbell 
et al. 2019) 

9 Provisioning NA  not defined in the methodological part 

    Food   

    Hydrocolloids   

    Feed (specified)   

    Other (specified)   

10 Regulating and 
maintenance 

NA  not defined in the methodological part 

    Biological 
regulation 
(specified) 

Alien species, biodiversity/genetic 
conservation, habitat provision, algal 
bloom regulation, other. 

    Water quality Eutrophication, biomitigation, 
bioremediation. Specified. 

    Coastal protection Erosion, wave reduction. 

    Climate regulation 
(specified) 

CO2, carbon cycle, DMS, other. 
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    Other (specified)   

11 Cultural NA   

    Symbolic and 
esthetic 

  

    Recreation and 
tourism 

  

    Cognitive 
(specified) 

 Inspiration 

    Scientific 
knowledge 
(specified) 

e.g. Number of proposals/grants. 

    Education/learning   

    Other (specified)   

12 Knowledge 
gaps 

    

13 Identified 
constraints 

    

14 Disservice/Neg
ative 
Impacts/Trade-
Offs 

    

15 Disservice 
comments 

    

16 Expert notes     

17 Specified   Additional information to different drop-
down points, when required  
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ANNEX 3. OVERVIEW OF DIFFERENT TYPES OF CONSTRAINTS IDENTIFIED IN THE 2140 

ANALYSED LITERATURE. 2141 

PESTEL Type Description 

Study Length Insufficient study length 

  Size Small scale (spatial and temporal) 

experiment 

  Stats Correlational data, not evaluated data 

Environmental Data Insufficient amount of environmental data 

  Seasonality Seasonal effects, e.g. during growing 

harvesting period 

  Weather Storms and extreme events 

  Substrate Effect of type and conditions of natural or 

artificial substrate 

  Emission CO2, Nutrients balance - footprint 

  Nuisance species Encrusting or epiphytic organisms 

affecting biomass quality or cultivation 

process; diseases 

  Water conditions Water quality and remediation processes 

and pollution load not sufficiently known 

  Predator/grazer  Grazing on cultivated macroalgae 

  Biological shift Effects on taxa and communities adjacent 

to the seaweed farm 

  Invasion Introduction of invasive non-native 

species 

Economical Financiation  Unclear/unspecified financial viability, 

dependence on other lifestocks 
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  Market Market  and value chain elements 

Technical Nursery Seedling, stock quality, new strains in 

cultivation 

  Post-Harvest  Management and processes after 

harvesting 

  Harvest Timing, techniques etc. harvest-related 

  Production Amount of produced biomass, production 

speed 

  Product quality  Quality of seaweed products 

  Training Training of people  

  Technology Development in technology 

Political ABS Access benefit sharing 

  Dependence Close relation / connection to other 

activities, e.g. wind parks 

   No support No governance support 

  Space Use of space  

  Awareness  Potential provision of ecosystem services 

Social Gender Gender inequality observed 

  Jobs Jobs connected with seaweed 

aquaculture 

  Stakeholder Stakeholder perception 

  2142 



REPORT: 
MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES 

 
 

2021 | August Method Protocol 84 
 

ANNEX 4. - OVERVIEW OF DIFFERENT TYPES OF KNOWLEDGE GAPS IDENTIFIED 2143 

IN THE ANALYSED LITERATURE 2144 

PESTEL Type Examples 

Environmental Data Uncertainty associated with modelling, need for more 

validated models, need for systematic data collection 

Seasonality Observed seasonal/ inter-annual effects, e.g. 

growing/ harvesting period 

Weather Observed effects of more severe weather events 

e.g. storms 

Substrate Effect of present natural or artificial substrate (type, 

conditions), creation of novel habitats 

Emission/Absorpt

ion 

CO2, Nutrients balance - food print, species 

dependent, Carbon footprint (using seaweed as 

terrestrial crop fertiliser), need for LCA for CO2 

regarding bioethanol production, impact of emission 

of volatile halocarbons 

Nuisance species 

/ diseases 

Incrusting or epiphytising organisms affecting 

biomass quality or cultivation process, diseases, 

biofouling, HAB formation and mitigation measures, 

influence of environmental conditions 

Water quality Water quality and remediation processes and 

pollution load not sufficiently known, nutrient inputs 

from terrestrial systems, cultivation in transitional 

waters 

Predator/grazer Grazing on cultivated macroalgae vs epiphyte 

control, effect of grazing on production losses 

Introduced 

species 

Introduced species, population etc. spreading in 

comparison to local types, maintenance and 

biosecurity 

Wider ecosystem 

effects 

Effect of farms on coral reefs, phytoplankton 

communities, seagrass beds, fish assemblages/ 

landings, fish farms, water quality, potential 

overharvesting of wild stocks, microbial communities, 

impact of associated communities post-harvest, 

creation of novel habitats, effect of stocking density, 

persistence of ecosystem services when seaweed 

cultivated 
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Genetic Effect on native seagrass genetic diversity, 

relationship between native and wild populations, 

influence of geographical distance and habitat 

discontinuity 

Carrying capacity Effect on carrying capacity of region 

Economical Financial Financial viability, co-culture potential, sharing of ABS 

agreements 

LCA Life Cycle Assessment for different products (e.g. 

biofuel, protein, liquid fertilisers) and culture 

environments (e.g. seawalls). Need to consider 

climate change in risk analysis 

Technical Nursery Seedlings, reproductive life cycles, stock quality, new 

strains in cultivation, development of new strain 

markers, nutrient storage/ deficiencies on pre-

deployment phase, optimal stocking densities in 

IMTA systems, new cultivars to improve nutrient 

uptake, role of microalgae unintentionally introduced 

into system. Optimisation of aeration regimes. 

Post-harvest Management and processes after harvesting, e.g. way 

lengths, use of valuable pigments, biofuel production, 

downstream processing 

Hazards In production process 

Harvest Quality, timing, techniques etc. concerning the 

harvest, particularly when upscaling, stocking density 

Production Amount of produced biomass, production speed, use 

of new farming methods (e.g. rafts) and associated 

growth rates, life cycle emissions, attachment 

mechanisms, influence of depth on growth rates, 

influences on nitrate/ phosphate uptake/ limitations, 

monitoring of carrageenan content using satellites, 

biofiltration potential, optimum light exposure. 

Effects of low water movement. need for longer 

experimental periods. Need for larger size of 

experiments (spatial and temporal), N/P global 

uptakes. Offshore farm design. Optimisation of 

aeration regimes (as in Nursery section). 

Product quality Greater knowledge on carrageenan chemistry 

Training Seed selection criteria 



REPORT: 
MACROALGAE CULTIVATION AND ECOSYSTEM SERVICES 

 
 

2021 | August Method Protocol 86 
 

Technology New technology - effectiveness, use of land/ sea 

based IMTA systems, new seeding techniques 

testing, new species, floating longlines, potential of 

secondary organisms in process. Energy saving 

processing (by-product extraction), improving 

growth in low nutrient environments, effectiveness of 

depth-cycling to increase nutrient availability/ 

prevent thermal stress, bioprospecting 

Political ABS Access benefit sharing 

Dependence Close relation/ connection to other topics, e.g. wind 

parks 

Support Need to develop policies to guide markets 

Social Gender Gender inequality observed, need for support 

mechanisms for access to information, resources, 

services, input to shaping risk assessments 

Jobs Jobs connected with SA, creation of jobs for fishing 

communities 

Stakeholder Stakeholder perception, acceptability, development 

strategies, site selection, impacts on communities, 

communication and Knowledge transfer 

Occupational 

Health 

Farmer safety - issues and solutions 

Coping with 

climate change 

Adaptive strategies for seaweed farming 

communities to cope with climate change 

Legal Governance Governance (e.g. co-location of seaweed farms with 

offshore wind), spatial planning, biosecurity, 

international framework for biosecurity required, 

need to establish rules on verification of air-sea CO2 

flux and permanence of carbon storage, lack of 

policies specific to seaweeds (e.g. no list of specific 

diseases/ pathogens) 

Contaminant 

limits 

Regulations on contaminant levels (e.g., bacteria) 
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