- 1 Types and characteristics of urban and peri-urban green spaces
- 2 having an impact on human mental health and wellbeing
- 3
- 4 A report of the EKLIPSE Expert Working Group on Biodiversity and Mental Health
- 5 to provide useful insights for the conservation, planning, design, and management
- 6 of urban green and blue infrastructures

- 7 Femke Beute<sup>1</sup>, Maria Beatrice Andreucci<sup>2</sup>, Annamaria Lammel<sup>3</sup>, Zoe Davies<sup>4</sup>, Julie
- 8 Glanville<sup>5</sup>, Hans Keune<sup>6</sup>, Melissa Marselle<sup>7</sup>, Liz O'Brien<sup>8</sup>, Agnieszka Olszewska-Guizzo<sup>9</sup>,
- 9 Roy Remmen<sup>10</sup>, Alessio Russo<sup>11</sup>, Sjerp de Vries<sup>12</sup>
- 10
- 11 <sup>1</sup>Lysegrøn Sundhed/LightGreen Health, Kolding, Denmark & Faculty of Spatial Planning,
- 12 University of Groningen, The Netherlands
- 13 <sup>2</sup> Department of Planning, Design, Technology of Architecture, and Faculty of Architecture,
- 14 Sapienza University of Rome, Italy
- 15 <sup>3</sup> Université Paris 8 Vincennes-Saint-Denis, Laboratoire Paragraphe, France
- 16 <sup>4</sup> Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation,
- 17 University of Kent, United Kingdom
- 18 <sup>5</sup> York Health Economics Consortium, York, United Kingdom
- 19 <sup>6</sup> University of Antwerp, Belgium
- 20 <sup>7</sup> German Centre for Integrative Biodiversity Research, Germany
- 21 <sup>8</sup> Forest Research, Social and Economic Research Group, United Kingdom
- 9 NeuroLandscape Foundation, Poland & National University of Singapore, Yong Loo Lin School of
   Medicine, Singapore
- 24 <sup>10</sup> Centre for General Practice, University of Antwerp, Belgium
- 25 <sup>11</sup> School of Arts, University of Gloucestershire, Cheltenham, United Kingdom
- 26 <sup>12</sup> Wageningen University & Research, Wageningen Environmental Research, the Netherlands
- 27 This report should be cited as: Beute, F., Andreucci, M.B., Lammel, A., Davies, Z., Glanville, J., Keune,
- 28 H., Marselle, M., O'Brien, L.A., Olszewska-Guizzo, A., Remmen, R., Russo, A., & de Vries, S. (2020)
- 29 Types and characteristics of urban and peri-urban green spaces having an impact on human mental
- 30 *health and wellbeing*. EKLIPSE report.
- 31
- 32

# 33 **Contents**

| 34<br>35 |    | es and characteristics of urban and peri-urban green spaces having an impact on<br>Ital health and mental wellbeing |    |
|----------|----|---------------------------------------------------------------------------------------------------------------------|----|
| 36       |    | of Abbreviations                                                                                                    |    |
| 37       | 1. | Report Summary                                                                                                      |    |
| 38       | 2. | Background                                                                                                          |    |
| 39       | ۷. | 2.1 Aims and objectives                                                                                             |    |
| 40       |    | The request                                                                                                         |    |
| 41       |    | The expert working group                                                                                            |    |
| 42       |    | 2.2 Theoretical framework: Green space and mental health and wellbeing                                              |    |
| 43       | 3. | Method                                                                                                              |    |
| 44       | 5. | 3.1 Literature search                                                                                               |    |
| 45       |    | Search strategy                                                                                                     |    |
| 46       |    | Eligibility                                                                                                         |    |
| 47       |    | Intervention                                                                                                        |    |
| 48       |    | Exposure                                                                                                            | 22 |
| 49       |    | Comparison                                                                                                          | 22 |
| 50       |    | Outcome                                                                                                             |    |
| 51       |    | Record selection                                                                                                    | 23 |
| 52       |    | 3.2 Meta-data extraction                                                                                            | 23 |
| 53       |    | 3.3 Critical Appraisal                                                                                              | 25 |
| 54       |    | Experimental                                                                                                        | 25 |
| 55       |    | Cross-sectional                                                                                                     | 25 |
| 56       |    | Qualitative                                                                                                         | 25 |
| 57       |    | 3.4 Synthesis                                                                                                       | 26 |
| 58       | 4. | Outcomes                                                                                                            | 30 |
| 59       |    | 4.1 Search outcomes                                                                                                 | 30 |
| 60       |    | 4.2 Critical Appraisal                                                                                              | 62 |
| 61       |    | Experimental studies                                                                                                | 62 |
| 62       |    | Cross-sectional studies                                                                                             | 66 |
| 63       |    | Qualitative studies                                                                                                 | 70 |
| 64       |    | 4.3 Synthesis                                                                                                       | 72 |
| 65       |    | Descriptive synthesis                                                                                               | 72 |
| 66       |    | Experimental                                                                                                        | 72 |
| 67       |    | Cross-sectional                                                                                                     | 84 |
| 68       |    | Qualitative                                                                                                         |    |

| 69 |    | Overview experimental, cross-sectional, and qualitative studies |     |
|----|----|-----------------------------------------------------------------|-----|
| 70 |    | Narrative synthesis                                             | 102 |
| 71 |    | Experimental                                                    | 102 |
| 72 |    | Cross-sectional                                                 | 109 |
| 73 |    | Qualitative                                                     | 115 |
| 74 | 5. | Discussion                                                      | 117 |
| 75 |    | 5.1 Urban green space, the park, and the forest                 | 118 |
| 76 |    | 5.2 Lawns, trees and other vegetation                           | 121 |
| 77 |    | 5.3 Gardens                                                     | 122 |
| 78 |    | 5.4 Biodiversity                                                | 123 |
| 79 |    | 5.5 Other green space types and characteristics                 | 124 |
| 80 |    | 5.6 Green space users and activities                            | 124 |
| 81 |    | 5.7 Putting the green space in context                          | 125 |
| 82 |    | 5.8 Limitations                                                 | 126 |
| 83 |    | 5.9 Quality of the included studies                             | 127 |
| 84 |    | 5.10 Progressing urban green space salutogenic design           | 128 |
| 85 | 6. | Concluding remarks                                              | 129 |
| 86 | 7. | References                                                      | 132 |
| 87 |    |                                                                 |     |

# 89 List of Figures

| Figure 1. Proposed pathways for the mental health benefits of green space                  | 13 |
|--------------------------------------------------------------------------------------------|----|
| Figure 2: PRISMA Flowchart of study inclusion                                              | 26 |
| Figure 3. Overall score (confidence of no bias) per item on the critical appraisal for the | 57 |
| experimental studies                                                                       |    |
| Figure 4. Overall score (confidence of no bias) per item on the critical appraisal for the | 61 |
| cross-sectional studies                                                                    |    |
| Figure 5. Overall score (confidence of no bias) per item on the critical appraisal for the | 66 |
| qualitative studies                                                                        |    |
| Figure 6. Overview of the green space categories division across the three study types     | 93 |
| Figure 7. Overview of division of the three study types across continents                  | 94 |
| Figure 8. Overview of the health outcomes studied across the three study types             | 94 |
| Figure 9. Overview of the population types included in the three study types               | 95 |
| Figure 10. Overview of the division of the environmental assessment area across the        | 96 |
| three study types                                                                          |    |
| Figure 11. Timeline of the included papers across the three study types                    | 96 |
|                                                                                            |    |

# 92 List of Tables

| Table 1. Overview of the information extracted during the meta-data phase               | 19 |
|-----------------------------------------------------------------------------------------|----|
| Table 2. Green space categories used for the descriptive and narrative synthesis        | 22 |
| Table 3. Mental health categories used for the descriptive and narrative synthesis      | 24 |
| Table 4. Literature search results                                                      | 25 |
| Table 5. Overview of the included studies; Experimental                                 | 27 |
| Table 6. Overview of the included studies; Cross-sectional                              | 44 |
| Table 7. Overview of the included studies; Qualitative                                  | 54 |
| Table 8. Confidence of no bias for the individual experimental studies                  | 58 |
| Table 9. Confidence of no bias for the individual cross-sectional studies               | 62 |
| Table 10. Confidence of no bias for the individual qualitative studies                  | 65 |
| Table 11. Overview of the countries for the included experimental studies               | 68 |
| Table 12. Overview of the population types for the included experimental studies        | 69 |
| Table 13. Overview of the health outcomes for the included experimental studies         | 69 |
| Table 14. Summary for studies with a comparison for the experimental studies            | 71 |
| Table 15. Summary for studies included in the urban green space category of the         | 72 |
| experimental studies                                                                    |    |
| Table 16. Summary for studies included in the park category of the experimental studies | 73 |
| Table 17. Summary for studies included in the garden category of the experimental       | 74 |
| studies                                                                                 |    |
| Table 18. Summary for studies included in the forest category of the experimental       | 76 |
| studies                                                                                 |    |
| Table 19. Summary for studies included in the Trees and other plants category of the    | 77 |
| experimental studies                                                                    |    |
| Table 20. Overview of the countries for the included cross-sectional studies            | 79 |
| Table 21. Overview of the population types for the included cross-sectional studies     | 80 |
| Table 22. Overview of the health outcomes for the included cross-sectional studies      | 81 |
| Table 23. Summary for country and population of studies with a comparison for the       | 82 |
| cross-sectional studies                                                                 |    |
| Table 24. Summary for health outcomes studies with a comparison for the cross-          | 83 |
| sectional studies                                                                       |    |
| Table 25. Summary for studies included in the urban green space category of the cross-  | 84 |
| sectional studies                                                                       |    |
| Table 26. Summary for studies included in the park category for the cross-sectional     | 85 |
| studies                                                                                 |    |
| Table 27. Summary for studies included in the forest / woodland category for the cross- | 87 |
| sectional studies                                                                       |    |
| Table 28. Summary for studies included in the Trees and other plants category for the   | 89 |
| cross-sectional studies                                                                 |    |
| Table 29. Summary for the included qualitative studies                                  | 91 |



# 94 Types and characteristics of urban and peri-urban green spaces

# 95 having an impact on human mental health and wellbeing

- 96 Femke Beute, Maria Beatrice Andreucci, Annamaria Lammel, Zoe Davies, Julie Glanville, Hans Keune,
- 97 Melissa Marselle, Liz O'Brien, Agnieszka Olszewska-Guizzo, Roy Remmen, Alessio Russo, Sjerp de
- 98 Vries
- 99

#### Glossary 100

| Term                          | Definition                                                                                                                                                                                                                                 | Reference         |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Green space                   | Outdoor areas dominated by vegetation, such as urban parks, or isolated natural elements, such as street trees.                                                                                                                            | Adapted from [1]  |
| Blue space                    | "Outdoor environments that prominently feature water<br>and are accessible to humans either proximally (being in,<br>on or near water) or distally/virtually (being able to see,<br>hear or otherwise sense water)."                       | [2], p. 3         |
| Mental<br>Health              | "A state of well-being in which every individual realizes his<br>or her own potential, can cope with the normal stresses of<br>life, can work productively and fruitfully, and is able to<br>make a contribution to her or his community." | [3]               |
| Mental<br>Wellbeing           | "The psychological, cognitive and emotional quality of a<br>person's life. This includes the thoughts and feelings that<br>individuals have about the state of their life, and a<br>person's experience of happiness."                     | [4], p. 12        |
| Urban                         | Relating to a city or town.                                                                                                                                                                                                                | Oxford dictionary |
| Peri-urban                    | An area directly adjacent to a city or a town.                                                                                                                                                                                             | Oxford dictionary |
| Ecosystem<br>Services         | "The benefits people obtain from ecosystems". Four<br>categories of ecosystem services can be identified:<br>Supporting, Regulating ,Provisioning, and Cultural Services.                                                                  | [5]               |
| Salutogenic<br>effects        | Health-promoting effects, as opposed to pathogenic or detrimental health effects.                                                                                                                                                          | [6]               |
| Green Space<br>Type           | A specific green area (e.g., a park, a garden, a forest)                                                                                                                                                                                   |                   |
| Green Space<br>Element        | A specific element of green space (e.g., tree, plant)                                                                                                                                                                                      |                   |
| Green Space<br>Characteristic | A distinguishing feature of a green space, not covered by<br>its type. E.g. the number of trees, or the path density in a<br>park. Or the scenic beauty of a green space.                                                                  |                   |
| Biodiversity                  | "the variability among living organisms from all sources<br>including, inter alia, terrestrial, marine and other aquatic<br>ecosystems and the ecological complexes of which they                                                          | [7], p. 3         |



|     | Term | Definition                                                                           | Reference |
|-----|------|--------------------------------------------------------------------------------------|-----------|
|     |      | are part; this includes diversity within species, between species and of ecosystems" |           |
| 101 |      |                                                                                      |           |
| 102 |      |                                                                                      |           |
| 103 |      |                                                                                      |           |

# 104 List of Abbreviations

| CgA         | Chromogranin A                                                       |
|-------------|----------------------------------------------------------------------|
| EEG         | Electroencephalogram                                                 |
| GSR         | Galvanic Skin Resistance                                             |
| fMRI        | Functional Magnetic Resonance imaging                                |
| Hb          | Haemoglobin                                                          |
| HR          | Heart Rate                                                           |
| HRV         | Heart Rate Variability                                               |
| LAeq        | Equivalent continuous sound pressure                                 |
| LF/HF ratio | Low Frequency / High Frequency ratio                                 |
| ln(HF)      | Natural log of High Frequency                                        |
| MTES        | Ministry in charge of the Environment of France                      |
| OPEC        | Outdoor Play Environment Categories                                  |
| Oxy-Hb      | Oxygen-haemoglobin                                                   |
| PANAS       | Positive Affect Negative Affect Schedule                             |
| POMS        | Profile Of Mood States                                               |
| RMSSD       | Root Mean Square of Successive differences between normal heartbeats |
| SD          | Standard Deviation                                                   |
| SDNN        | Standard Deviation of Normal to Normal heartbeats                    |
| SR          | Systematic Review                                                    |
| UK          | United Kingdom                                                       |
| USA         | United States of America                                             |
|             |                                                                      |





# 107 1. Report Summary

- 108 Green spaces have been proposed to benefit people affected by mental health disorders. In an
- 109 urban context, space is a scarce resource while urbanisation and climate change are increasingly
- 110 putting pressure on existing urban green space infrastructures whereas at the same time increasing
- 111 mental health disorders' morbidity. Policy makers, designers, planners and other practitioners face
- the challenge of designing public open spaces as well as preserving and improving natural resources
- that are important for maintaining and optimizing human wellbeing. Knowing which type of blue and
- green spaces, with which characteristics, are most beneficial for mental health and wellbeing is
- 115 critical.
- 116 EKLIPSE received a request from the Ministry in charge of the Environment of France (MTES) to
- 117 review: "Which types of urban and peri-urban green and blue spaces, and which characteristics of
- such spaces, have a significant impact on human mental health and wellbeing?". After a preliminary
- scoping, it was decided in April 2018 to perform two systematic reviews (SR) assessing the specific
- 120 types and characteristics of blue space (SR1) and green space (SR2) with respect to mental health
- 121 and wellbeing. This report presents the systematic review for green space (SR2).
- 122 Benefits of green space on mental health have been proposed to be delivered through several
- 123 distinctive pathways. Green spaces have been found related to lower stress levels, higher levels of
- 124 physical activity, better social cohesion, and better air quality. In addition, green spaces often
- 125 receive higher aesthetic preference ratings, resulting in a higher residential satisfaction, and better
- immune function.
- 127 The question remains whether all the pathways always occur and at the same time, and whether
- they are equally important for every individual and for all types of green spaces. Some evidence
- 129 exists for differential outcomes for individuals differing in for instance life stage or socio-economic
- 130 status. The effects of green spaces may thus not be the same for everyone. Furthermore, different
- 131 population segments may also need or prefer different types of green spaces, with different
- 132 characteristics for the same function. For example, facilitation of physical activity in a park may be
- 133 accomplished differently for children (e.g., challenging natural areas to allow for climbing, or large
- 134 grass fields to practice sports) compared to elderly (e.g., accessible paths).
- 135 In research thus far, however, the focus has often been on exposure to rather generic green space 136 imagery, or on the amount of, or proximity to green space or elements, rather than on the specific
- 137 types or characteristics of green environments. This does not allow for differentiation either
- between different functions (e.g., for physical exercise or stress reduction) or types of natural
- environments. More knowledge of the importance of types and characteristics of green space, may
- help to unlock its potential to contribute to human health [8-10] and can thus usefully determine
- 141 planning and management decisions.
- 142 In order to generate this evidence-based knowledge, there is an explicit need to identify measurable
- outcomes of the various mental health benefits provided by nature, and to identify key
- 144 characteristics of this natural element. A recent conceptual model aimed at translating outcomes of
- 145 research on the restorative effects of nature on mental health benefits and implementing solutions
- 146 for the provision of ecosystem services also included natural features as one of four key components
- for mental health benefits. Besides natural features, the model also points to the importance of (exposure' -operationalized as actual time spent in nature- which are related to the design and

- 149 composition of natural landscapes. A third component 'experience' adds to 'exposure' by looking at
- the (sensory) qualities of natural areas, the way people interact with them, and the 'dose' (or the
- 151 'absorbed internal dose') people receive. In other words, a distinction is made between 'objective'
- 152 exposure and how much effect this exposure produces from moderating factors in, for instance,
- 153 connectivity with, or attention to, nature. The last component refers to the range of mental health
- 154 effects that can be expected.
- 155 Outcomes of systematic reviews generally point at beneficial relations between urban green space
- and mental health, but an overarching conclusion in this research domain is that the geographical
- diversity of settings and the heterogeneity of objectives, theoretical frameworks, covariate data,
- 158 target population, and research methods in the reviewed studies made the comparison and
- 159 establishment of robust results difficult.
- 160 There is both a practical and a theoretical need to gain a better understanding of which types and
- 161 characteristics of green space matter most for urbanites in terms of mental health and wellbeing.
- 162 The objective of the present systematic review was to tackle this knowledge gap.
- 163 The systematic review (SR2) followed the PRISMA guidelines for systematic reviews and
- 164 incorporated three different categories of studies; experimental studies, cross-sectional studies, and
- 165 qualitative studies. The literature search was conducted in two different databases; Scopus and
- 166 Medline (Ovid). For paper selection, eligibility criteria were implemented along five dimensions:
- 167 people, intervention, exposure, comparison, outcomes (PICO/PECO approach, see section 3.1 for a
- 168 more detailed explanation).
- 169 First, all population types (e.g., children, elderly, students, employees, general population, or clinical 170 sample) were deemed eligible as long as the study included more than a single participant (single 171 case, or single patient studies, were excluded). Second, eligible green space interventions were 172 those that manipulated or changed the exposure to a green space, either by targeting its 173 characteristics or type, the amenities and facilities present in it were also of interest. Studies 174 investigating only the efficacy of therapeutic interventions in green environments were excluded 175 from the systematic review. Third, only studies investigating exposure to outdoor green space were 176 deemed eligible. Studies looking at exposure to rural green space were also included in the review, 177 as they could still inform about mental health benefits of green space and their characteristics. 178 Fourth, the comparison or reference environment was ideally another type of green space (though 179 other comparisons with for instance a built environment or a blue space were also included), or the 180 same type with other characteristics, e.g., a comparison between different tree species. Studies 181 investigating a single environment, but with pre-post- measurements were also included. Studies 182 employing a compound measure of green space (e.g., taking grassland and forest within one 183 category) were excluded. Fifth and last, a wide range of mental health and wellbeing outcomes were 184 included in the review, ranging from momentary mood to suicide rates. The World Health 185 Organization ICD-10 mental health classification system (WHO, 1992) was adhered to: affective 186 disorders, stress-related diseases; schizophrenia, psychosis, paranoia; personality disorders; 187 disorders of psychological development; cognitive dysfunction; neurodegenerative disease; problem 188 behaviour. Studies looking only at preference ratings, perceived restorativeness, expected 189 restorative effects of physical health correlates to mental health (such as physical activity without 190 looking directly at mental health outcomes) were excluded. Qualitative studies were searched for 191 using the same inclusion and exclusion criteria. Qualitative studies were included to identify in-depth

- 192 insights from peoples' experiences of engaging with green spaces and the meanings people
- 193 attributed to these experiences.
- 194 The search yielded a total of 16,581 unique (deduplicated) papers. After three rounds of eligibility
- screening, a total of 134 eligible studies were included; 55 cross-sectional papers, 67 experimental
- 196 papers (68 studies), and 12 qualitative papers. Meta-data was extracted from these 134 papers in
- 197 four categories: general information, methodology, green space manipulation, and mental health
- 198 outcomes.
- 199 All included papers were systematically assessed on their potential of systematic bias (introduced for
- 200 instance by the study design, selection of participants, or selection of green space manipulations)
- 201 during the critical appraisal phase. Studies with low scores in the critical appraisal phase were
- 202 excluded from the next step, i.e.,; the synthesis.
- 203 Both a descriptive synthesis and a narrative synthesis were performed per study group
- 204 (experimental, cross-sectional, and qualitative). Before starting the synthesis, all papers were
- 205 divided into seven different categories according to green space types and included: urban green
- space; park; garden; forest and woodland; grassland and meadows; trees and other plants; other
- 207 green space types (miscellaneous category). Two categories included papers looking into green
- space characteristics: biodiversity; other green space characteristic (miscellaneous category). One
- study could represent several categories (e.g., forest and grassland) and could therefore be included
- in more than one category. As the main purpose of the review is to look at differential effects
   between green space types and characteristics, all studies comparing different green space types or
- characteristics were gathered for each category and treated separately. Groupings and tabulations
- 213 were also made per health outcome measure, divided into fourteen categories: mental health,
- subjective wellbeing, affect, vitality, restorative outcomes, severity mental disorder, prevalence
- 215 mental disorder, perceived stress, physiological stress, satisfaction with life, quality of life,
- 216 behavioural problems, brain activity, and miscellaneous.
- 217 The descriptive synthesis included six different factors: the country in which the study was
- 218 conducted; whether the sample was drawn from a general, at-risk, or clinical population; the type of
- 219 population (e.g., students, local residents); the type of health outcomes; the assessment
- 220 environment (e.g., residential area, school environment, or green space visit); the design of the
- study (cross-sectional versus longitudinal, or within- between- mixed- subjects design or pre-post
- 222 design). A further distinction was made between studies with direct exposure versus those with
- indirect representations of green space (e.g., videos and Virtual Reality) within the experimental
- study category, as no indirect exposure was present in the cross-sectional and qualitative studies.
- 225 After these overviews were created, the narrative synthesis was performed, where results were
- 226 further analysed by looking at differences in possible mediators, such as the type of activity, the
- study design, the sample, as well as the risk of bias (outcomes of the critical appraisal), to
- 228 understand the observed heterogeneity in outcomes. Conceptual maps were created to reveal
- 229 patterns in the outcomes and to further explain heterogeneity.
- 230 Not all studies enabled a direct comparison between different green space types and different green
- space characteristics though. Therefore, conclusions sometimes had to be based on indirect
- comparisons. A study in which two green space types both showed significant positive outcomes
- 233 compared to e.g. a built-up environment were rated as having similar effects in the indirect

- comparison. However, there may still exist differences between these green spaces types in effectsize.
- 236 Most studies focused on green space types, and fewer on green space characteristics. Predominantly
- 237 beneficial effects were reported for all green space categories and characteristics. Parks, forests,
- 238 grassland, and other urban green spaces (such as green community squares, or greenways) can
- 239 independently improve mental health. Not only designated urban green spaces such as urban parks
- 240 or forests appeared to matter, but also informal street greenery and tree canopy. Outcomes
- indicated in particular a clear relation between more trees and better mental health. On the other
- hand, shrubland -especially when dense and highly connected- may be negatively associated with
- 243 mental health. Higher biodiversity generally resulted in better mental health outcomes.
- 244 Even though rather consistent benefits of green spaces were reported, the direct comparisons of the
- 245 different green space types and characteristics rendered very mixed results. The largest group of
- studies focussed on either the park (and the urban green space) or the forest. Contradictory effects
- 247 were found in direct comparisons between the two, with superior effects for the forest than the
- 248 park on short-term mental health outcomes, as reported in most experimental studies and the exact
- 249 opposite in three cross-sectional studies on long-term mental health outcomes. At least two
- 250 explanations can be provided for the heterogeneity in these comparison results; diversity in user
- 251 characteristics and needs as well as microclimatic circumstances and different cultural
- representations; and/or the need for a better measurement of actual exposure.
- 253 First, the heterogeneity in outcomes for the comparisons between different green space types and
- characteristics may suggest that there is not one single green space type or characteristic that is
- 255 best, or a 'gold standard' that works best for everyone, everywhere, and at every time. Instead,
- there may be a need for variety in green space types for different users with different needs and also
- 257 undertaking varied activities. What adds complexity is that these variations not only occur between
- individuals, but also within a single person. On a bad day, a person may benefit more from a specific
- green space or quality than on a good day. In addition, factors such as geographical location, cultural
- 260 perspectives, and climatic conditions may also influence how a specific green space type and/or
- 261 qualities influence mental health. Here also lies a potential challenge as climate change is not only
- affecting biodiversity in the cities, but also the microclimate within of different urban areas within a
- 263 city.
- 264 Second, contradictory findings may be due to outcomes depending on the (actual and accumulated)
- amount of exposure. Total exposure over time is assumed to be important for long-term wellbeing
- 266 benefits. Most experimental and cross-sectional studies did not fully capture actual exposure
- though. In the majority of the experimental studies, participants were taken to a certain green space
- 268 environment -rather than that they choose to be there themselves- which may thus not reflect their
- actual exposure in daily life. In the cross-sectional category, on the other hand, many studies
- 270 investigated effects of proximity or availability of green space types as a proxy for actual exposure.
- 271 Having a park nearby does not automatically imply that an individual will actually use it.
- 272 Consequently, there is a need for more research looking at actual exposure.
- 273 In addition to the actual exposure, there is also a need to know more about the experiences that
- 274 people have and develop in the green spaces. Users' characteristics can influence whether and how
- a person benefits in terms of mental health from the different green spaces and related
- 276 characteristics, and also which dose of the green space or green space characteristic is necessary to
- 277 reach a certain effect. This partly re-confirms the first explanation of the heterogenous results
- 278 indicating that effects of different green space types and characteristics may differ based on factors

- 279 such as life stage, gender, socio-economic status, or connectedness to nature. At the same time,
- 280 effects may also depend on geographical location, season, or other microclimatic aspects.

281 The studies included in the review were highly heterogeneous in terms of objectives, theoretical 282 frameworks, covariate data, target population, and research methods. Previous systematic reviews 283 have indicated that this diversity makes drawing solid conclusions difficult. This was also the case for 284 the present review as it was not possible to draw firm conclusions on how exactly exposure and 285 experience influence mental health benefits of urban green spaces. At the same time, the present 286 review has indicated that when trying to identify benefits of specific green space types and specific 287 green space characteristics on mental health, this diversity in outcomes and user characteristics may 288 not necessarily be a weakness but, instead, a prerequisite for gaining a better understanding on how 289 exactly different green space types and characteristics influence mental health and wellbeing. 290 However, there needs to be a more systematic way to study this, with for instance longitudinal 291 studies. Another way to go about this is to purposefully address this heterogeneity in the research 292 methodology. For instance, by enabling a direct comparison not only between different green space 293 types and characteristics, but also between different users (e.g., age, mental health status), different 294 activities (e.g., active versus passive activities), different locations (geographical locations, or in areas 295 with different population densities), or different seasons.

296 The present review has once again established a general beneficial relation between green space 297 and mental health, an association that seems to hold for most green space types. Comparisons 298 between different green space types have revealed a heterogeneity in outcomes that points at 299 potential underlying pathways that deserve further attention. Two main venues for future research 300 are consequently proposed: a better assessment of the actual exposure as well as of the role of 301 individual experiences within the specific green spaces. Gaining knowledge on how actual exposure 302 to- and experience with- specific natural features can help improve and maintain mental health will 303 enhance the understanding of which types, qualities, and variety of green space are required to 304 tailor urban green space design to the specific needs and preferences of increasingly vulnerable 305 urban communities in an attempt to face not only increased urbanisation but also climate change.

306

307

# 309 2. Background

- 310 In an increasingly urbanizing world, pressures are growing on ecosystems. Furthermore,
- 311 urbanization is associated with an increase of several mental disorders [11]. Conversely, a lack of
- 312 green space availability has been found to be related to worse mental and physical health [12, 13]. To
- 313 reduce negative mental health effects in cities, functional and healthy ecosystems are a necessity
- [14]. Policy makers, designers, planners and other practitioners face the challenge of designing
- 315 natural resources and preserving and conserving existing ones that are important for maintaining
- 316 and optimizing human wellbeing. In an urban context, space is a scarce resource. Therefore, knowing
- 317 which type of blue and green spaces, with which characteristics, are most beneficial for health and
- 318 wellbeing is critical. It is exactly this question that lies at the core of the request put to EKLIPSE's
- 319 experts.

### 320 2.1 Aims and objectives

- 321 In March 2017, EKLIPSE called for experts (call for experts No. 2/2017) to assess and share existing
- 322 knowledge on this issue across disciplines, following up a request initially formulated by the Expert
- 323 Working Group Biodiversity & Health, 3rd National Plan on Health and Environment (PNSE3) -
- 324 Ministry in charge of the Environment (MTES), France. MTES requested advice for the
- 325 "conservation, creation, design and management of natural spaces that would benefit urban citizens,
- by maintaining or enhancing their mental health and wellbeing", as well as promoting systematic,
- 327 interdisciplinary, and cross-cultural research.

#### 328 The request

- 329 The request was as follows:
- "Which types of urban and peri-urban green and blue spaces, and which characteristics of such
  spaces, have a significant impact on human mental health and wellbeing?"
- 332 The intention of the request is to provide advice to policy makers, practitioners and researchers
- regarding the planning, design, construction, and management of green and blue spaces in urban or
- 334 peri-urban areas to promote the mental health and wellbeing of urbanites as well as those visiting
- 335 urban areas.
- After a preliminary scoping exercise, it was agreed with the requestor to specifically focus on
- comparing different types of urban and peri-urban green and blue spaces and/or variations in
- 338 green/blue space characteristics. It was agreed that two systematic reviews, one for blue and one
- for green space, would be undertaken. This report presents the outcomes for the green space
- 340 systematic review.

#### 341 The expert working group

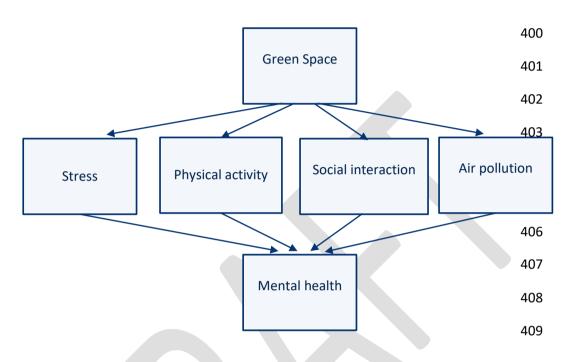
- 342 The expert working group was composed of 11 members from 7 countries. A range of disciplines and
- 343 backgrounds were covered: urban ecology, biology, landscape architecture, medicine,
- 344 environmental science, psychology, anthropology, political science, and sociology. Communication
- 345 was maintained across the team via email and virtual meetings, with a series of face-to-face
- 346 meetings organised by EKLIPSE to facilitate key stages of the work. Experts worked intuitu personae,
- 347 and on a voluntarily basis without receiving financial compensation. A post-doc fellow joined the
- 348 expert working group in April 2019 to help coordinate and conduct the work, benefitting from the
- 349 financial support of EKLIPSE. Librarians were employed to support the expert working group,

- 350 conducting the systematic literature searches and assisting with the first stages of the eligibility
- 351 screening. This was made possible with additional financial support of the World Health
- 352 Organization.

### 353 2.2 Theoretical framework: Green space and mental health and wellbeing

354 Green and blue infrastructure in the city plays an important role in the health and wellbeing of city 355 dwellers. More and more people live in cities nowadays and existing cities continuously increase in 356 both size and density. The recent pandemic outbreak of Covid-19 has painfully pointed at the 357 different roles that urban green infrastructure play for health in general and mental health in 358 particular. Social gatherings in the park were no longer allowed and not everyone had a private 359 garden or even a balcony available to go outdoors. With many places in lock-down, this has 360 potentially had marked effects on urbanites' mental health. At the same time, in those areas with 361 less strict lock-down rules an increased interest in nature and nature visits was registered [15]. In response, large metropoles such as Milan are now considering redesigning the city to create more 362 363 space for pedestrians and cyclists, to keep out polluting cars and lower pressure on public transport. 364 This redesign could potentially also give more space to nature in cities, which once again underlines 365 the need to know more about which types and characteristics of nature are key to mental health.

- 366 Four pathways can be identified for the beneficial effects of nature on health [16]: 1) stress, 2)
- 367 physical activity opportunities, 3) social cohesion, and 4) air quality improvement (see Figure 1).
- 368 Restoration theories have proposed evolutionary-based positive affective responses to nature
- 369 (Stress Reduction Theory; [17]), as well as cognitive recovery and resource replenishment after
- viewing natural settings (Attention Restoration Theory; [18]). These two theories mainly rely on
- aesthetic and visual qualities of the natural environments, and are related to presumed intrinsic
- 372 characteristics of nature. Humans are posited to have an intrinsic affection toward unthreatening
- nature, a term that has been labelled 'biophilia', as opposed to 'biophobia' (i.e., the fear of nature)
   relating for instance to innate fight or flight responses that humans have toward snakes and spiders
- 375 [19, 20]. As the focus of the present review is on mental health, the effects of green space on stress
- 376 is of particular interest. Stress reduction may also come about through the mitigation of noise and
- 377 crowding in more natural environments [16].
- 378 The second pathway, physical activity, is currently increasingly gaining attention. Physical activity (as
- opposed to sedentary behaviour) has demonstrated positive effects on mental health [21-23].
- 380 Experimental studies have pointed at added benefits of physical activity in green areas as opposed to
- indoor or urban areas [24-27]. Cross-sectional or epidemiological studies on the neighbourhood level
- show unclear results, though [28-34]. Besides green space availability, the characteristics of the
- 383 urban green space may facilitate, or hinder, physical activity. A study in Denmark found that it was
- not necessarily the amount of green space in the proximity of participants' homes, but the presence
- of certain elements or characteristics such as walking routes, wooded areas, a water area, or a
- 386 pleasant view [35].
- 387 Improvements in social interactions (at the individual level) [36] and social cohesion (at the
- neighbourhood level) [33, 37] is a third proposed pathway linking nature exposure with mental
- 389 health. The design of green space, such as urban parks, has found to matter for the relation between
- 390 green space and social cohesion [38]. The link between social interaction and mental health has
- been firmly established [39] although the link between social interactions and social cohesion and
- 392 green space has received less research attention than the first two pathways.




393 Air pollutants, the fourth pathway, does not only have pronounced negative effects on physical

health and mortality [40, 41], but also on mental health [42-44], and cognitive performance [45]

395 [46]. Besides a direct link between air pollution and mental health, it has also been proposed that air

- pollution, together with traffic-related noise can constraint the restorative potential of an
- environment [47]. Trees and other plants may also release pollen which can aggravate allergies [16,
- 398 48] ; taking into account ecosystem disservices is consequently equally important.
- 399



## 410 Figure 1. Proposed pathways for the mental health benefits of green space

411

412 Other potential pathways relate to greater aesthetic appreciation of and increased residential 413 satisfaction with greener residential areas. In addition, an emerging field is looking at a microbial 414 pathway related health, but also mental health, with biodiversity [49, 50]. The question remains whether all the pathways always occur and at the same time, and whether they are equally 415 416 important for every individual and for all types of green spaces. A number of studies have already 417 indicated that the mental health benefits of green space exposure may differ during different stages 418 in life and between different population types. People that already experience mental health 419 problems may benefit more from exposure to green space than those without mental health 420 problems [51-53]. Another study points at different effects of green space on psychiatric morbidity 421 over the life course, a pattern that also differed between males and females [54], whereas the 422 effects of green space on mortality (including self-harm) was found to be stronger for people with a 423 lower socio-economic status [55]. The effects of green spaces may thus not be the same for 424 everyone. Furthermore, different population segments may also need or prefer different types of 425 green spaces, with different characteristics for the same function. For example, facilitation of 426 physical activity in a park may be accomplished differently for children (e.g., challenging natural 427 areas to allow for climbing, or large grass fields to practice sports) than for elderly (e.g., accessible 428 paths).

In research thus far, however, the focus is often on exposure to rather generic green space imageryor on the amount or proximity of green space or elements rather than the specific type or

431 characteristics of green environments. This does not allow for differentiation between the different 432 functions (e.g., for physical exercise or stress reduction) or types of nature. According to a recently 433 proposed international research agenda [8] on the health-benefits of nature contact, the research 434 outcomes have not progressed significantly. They conclude that "standard exposure measures are 435 not grounded in the ecological elements most relevant to human health and wellbeing" (p. 6). For 436 example, the quantity of nature is often measured using aerial photography or remote sensing 437 techniques. Such data offer little information on the quality of the landscape view from the ground 438 level, do not account for how often residents interact with these natural environments, or do not 439 focus on other attributes which may be important in terms of generating positive health outcomes. 440 More knowledge on the importance of the type, characteristics of green space, may help to unlock 441 its potential to contribute to human health [8-10] and can thus inform planning and management 442 decisions.

443 In order to generate this knowledge, there is an explicit need to identify measurable elements of 444 nature and to identify the key characteristic of this natural element [8]. Similarly, a recent 445 conceptual model aimed at translating outcomes of research on the restorative effects of nature on 446 mental health benefits and implementing solutions for the provision of ecosystem services [56] also 447 included natural features as a key component. Specifically, the authors refer to differences in 448 biodiversity and differences in vegetation. Besides natural features, the model also points to the 449 importance of 'exposure' -- operationalized as actual time spent in nature (and accessibility and 450 proximity as a proxy of exposure)- which are related to the design and composition of natural 451 landscapes. The third component 'experience' adds to 'exposure' by looking at the (sensory) 452 qualities of natural areas, the way people interact with it, and the 'dose' (or the "absorbed internal 453 dose"). In other words, a distinction is made between "objective" exposure and how much effect 454 this exposure has by moderating factors in, for instance, connectivity with or attention to nature. 455 The last component refers to the range of mental health effects that can be expected.

A number of systematic reviews have been already been conducted investigating the effects of green space on mental health (see, e.g., [57-65]). Some systematic reviews have had a specific focus on for instance study design (i.e., epidemiological research; [59]), specific geographical areas such as urban green spaces [66], a specific activity in green space such as exercising [62], or specific life stages such as childhood [57]) and adulthood [60]. However, all reviews have focused on effects of green space in general, not taking into account specific types or characteristics of green space.

462 There are a number of (systematic) reviews that have focused on a specific green space type, though 463 not all had focused on the direct effects of urban green space on mental health. One systematic 464 review of reviews on the health benefits of urban green spaces indicates that there is a benefit of 465 urban green space on perceived mental health [9], while another concludes that urban green space 466 is important for both ecosystem and human health [67]. Other reviews reported beneficial 467 associations between urban parks and physical activity, as well as the importance of certain 468 characteristics of parks such as the presence of paths [68]. A second review found that parks can, 469 amongst other results, improve mental health and social cohesion [69]. Urban green space can also 470 mitigate the negative perception of noise in cities [70] and cool down the urban built environment 471 [71].

Outcomes of systematic reviews thus generally point at beneficial relations between urban green
space and mental health, but an overarching conclusion in many systematic reviews in this research
domain is that the geographical diversity of settings and the heterogeneity of objectives, theoretical
frameworks, covariate data, target population, and research methods in the reviewed studies made
the comparison and establishment of robust results difficult [8, 13, 16, 59-61, 63, 72-74]. Part of the

EKLIPSE – Green spaces and mental health and wellbeing

- 477 problem arises from the fact that green space benefits are the focal point in different scientific
- 478 disciplines with different research traditions (e.g., landscape architecture, medicine, experimental
- 479 psychology) and with different research designs, including laboratory experiment, field studies,
- 480 epidemiological studies, and qualitative explorations. Parallel with these different research designs
- 481 run the different focal areas of green space exposure; viewing nature (e.g., in a laboratory setting),
- 482 access and proximity to nature (e.g., using satellite data to calculate amount of green space around
- the residence coupled with national health surveys), and visiting natural spaces (e.g., pre-post visit
- 484 measurements). Moreover, green space benefits have been reported within a very wide range of
- health outcomes, including not only mental but also physical health.
- There is, consequently, both a practical and theoretical need to gain a better understanding of which
  types and characteristics (i.e., features or design elements) of green space matter most for urban
  residents in terms of mental health and wellbeing. The objective of the present systematic review
- 489 was to tackle this knowledge gap. This review aims to inform decision makers in several domains,
- 490 such as health promotion, nature management, spatial policy, as well as urban planning and design.
- 491
- 492

# 493 **3. Method**

- 494 The systematic review and it's reporting adhered to the Preferred Reporting Items for Systematic
- 495 reviews and Meta-Analyses (PRISMA) guidelines (Moher et al., 2010) and consisted of six
- 496 consecutive steps; literature search, eligibility screening, meta-data extraction, critical appraisal,
- 497 descriptive synthesis, and narrative synthesis. A protocol of the systematic review is available on the
- 498 website of EKLIPSE (http://www.eklipse-mechanism.eu/health\_activities).

### 499 **3.1 Literature search**

#### 500 Search strategy

501 The search strategy to retrieve evidence for the systematic review of the impact of green spaces on 502 mental health conditions was developed in Ovid MEDLINE.

- 503 The search strategies were conducted to identify records that reported information on green spaces
- 504 (variously described) and mental health (variously described). The search followed two approaches;
- 505 the first used only subject headings for green spaces and mental health terms and the second used
- 506 free text search terms in the title, abstracts and author keywords of the records. The free text terms
- 507 combined terms for green spaces and mental health using adjacency for a more refined and focused
- search strategy. The concept containing subject headings and the concept containing the free text
- 509 terms were then combined using OR.
- 510 The search was therefore, multistranded, and the two concepts were combined in line 36 (see
- 511 Appendix A) with an OR. The search strategy was developed using a test set of known relevant
- 512 studies and its expected performance was tested in terms of finding the records in the test set. The
- 513 search was constructed as follows:
- Strand 1: Subject Headings for green spaces AND general or specific mental health issues (lines
   1 to 10)
- 516 2. Strand 2: Free text terms for green spaces in title/abstract/author keywords ADJ mental
  517 health terms (lines 11 to 34)
- 518 3. Strand 1 OR strand 2 (line 36)
- 519 In the MEDLINE strategy animal studies were removed using a standard algorithm (line 37) and
- 520 publication types were also excluded which were unlikely to yield relevant information, such as
- 521 comments, editorial, news, letters and case reports (line 38). The searches were limited to English
- 522 language to keep the workload and generated output manageable.
- In the Scopus strategy animal studies were removed and studies from MEDLINE were removed tolimit the search results to Scopus only.
- 525 This search was sensitive but still only managed to capture 13/33 (40%) test set studies and did thus
- 526 not capture all of the test list studies. A second strategy was then developed for Scopus alone (since
- 527 the missed studies were not indexed in MEDLINE). This found 12 additional test list studies, bringing
- 528 the total retrieved by the searches to 76%. Full search strategies are provided in Appendix B.
- 529 The resources searched were Scopus and Medline (Ovid), a subset of Scopus.



- 530 The titles and abstracts of bibliographic records were downloaded and imported into EndNote
- 531 bibliographic management software and duplicate records were removed using several algorithms.

#### 532 Eligibility

- 533 The search was restricted to papers from peer-reviewed journals. To perform this systematic review
- a PICO was developed to guide the process. PICO stands for Population (or Patient or Problem),
- 535 Intervention, Comparison, and Outcome, and defining the PICO terms is an integral part of a
- 536 Cochrane Review [75]. In PECO, the E stands for Exposure and allows for the inclusion of cross-
- 537 sectional studies (without an intervention), which, even though they do not allow for unambiguous
- 538 causal inferences, can be highly informative in this field of research.

#### 539 **Population**

540 No restrictions were made in terms of the population other than that single-case or single-patient 541 studies (n=1) were excluded.

#### 542 Intervention

- 543 Eligible green space interventions were those that manipulated or changed the exposure to green
- space, either by targeting its green space characteristics or green space type. The amenities and
- 545 facilities present in a green space were also of interest, as these may influence accessibility,
- 546 affordances, and attractiveness, and, thereby, the exposure and type of contact. Studies
- 547 investigating only the efficacy of therapeutic interventions in green environments were excluded
- 548 from the systematic review. This is because the intervention is focused on human beings, unless
- these studies also included an intervention on the physical environment, such as the design of a
- therapy garden incorporating green space.

#### 551 *Exposure*

- 552 Only studies investigating exposure to outdoor green space were deemed eligible (e.g., studies 553 investigating effects of indoor plants were excluded). Exposure to, or experience with, nature can be 554 divided into indirect, incidental, and intentional interactions with nature [76]. All types of nature 555 experiences were included in the review, both intentional and incidental. For indirect interactions, 556 viewing representations of nature, as well as viewing nature through a window were included. 557 However, we distinguished between direct and indirect exposure to green spaces. Studies looking at 558 rural exposure to green space were also included in the review, as not all studies provide clear 559 information on where the study is conducted (i.e., in a rural or urban area) and they could also still be informative concerning the mental health benefits of these types of green space and their 560 characteristics. Studies conducted in Europe qualify by definition. Studies conducted in other regions 561 562 may still be relevant, depending on the region and theme of the study. Studies that are for instance,
- 563 very specific for tropical locations/regions are less likely to be relevant for a European context.

#### 564 *Comparison*

565 The focus of the systematic review is on planning and design strategies, operationalised in terms of

- 566 types and /or characteristics of green space. Therefore, the comparison or reference environment
- 567 was ideally another type of green space (though other comparisons with for instance the built
- 568 environment or blue space would also be included), or the same type with other characteristics, e.g.,
- a comparison between different plant species. It may also have been about the different spatial
- 570 configuration of green spaces (controlling for the total amount). Studies comparing the amount of

- 571 green between different areas were not eligible, unless they also included a comparison between
- 572 types or characteristics of those spaces. Studies investigating a single environment, but with a pre-
- 573 post measurement were also included. As we were interested in distinguishing between different
- 574 types of green spaces, studies employing a compound measure of green space (e.g., taking grassland
- 575 and forest within one category) were not included. To make sure that the types or characteristics of
- 576 the green space were directly linked to the observed differences in mental health or wellbeing, other
- 577 aspects should have remained the same as much as possible.

#### 578 **Outcome**

- 579 A wide range of mental health and wellbeing outcomes were included in the review, ranging from
- 580 momentary mood to suicide rates. Included categories encompass: general mental health (i.e.,
- quality of life, satisfaction with life, subjective wellbeing); acute and direct effects on momentary
- mood, stress, and mental fatigue; retrospective reporting of momentary mood (i.e., recalled
   restoration); prevalence and severity of mental health problems; and specific correlates of mental
- health (e.g., loneliness, sleep, and pain). The World Health Organization ICD-10 mental health
- 585 classification system (WHO, 1992) was adhered to: affective disorders, stress-related diseases;
- schizophrenia, psychosis, paranoia; personality disorders; disorders of psychological development;
- 587 cognitive dysfunction; neurodegenerative disease; problem behaviour. Studies looking only at
- 588 preference ratings, perceived restorativeness, expected restorative effects, physical health
- 589 correlates of mental health (such as physical activity without looking directly at mental health
- outcomes) were excluded. Studies looking at psychological states directly linked with mental health(such as loneliness) were included in the review.
- 592 Qualitative studies were searched for using the same inclusion and exclusion criteria. These studies
- 593 were included to identify in-depth insights into people experiences of engaging with green spaces
- and the meanings people ascribed to these experiences.

#### 595 Record selection

- 596 Obviously ineligible records were excluded by title by a single reviewer. Potentially eligible records 597 were then loaded into a systematic review management system (Covidence), before the titles and 598 abstracts were screened against the eligibility criteria. Each record was screened by two reviewers 599 and disagreements were discussed. A conservative approach was taken, whereby any paper that was 600 not obviously ineligible was retained. Subsequently, the records were screened at full text in 601 Covidence. Two main reviewers each screened half of the records. The EWG members screened 602 each record independently for the second time. In case of disagreement, the main reviewer that had
- not yet screened that record would look at the full text to resolve the conflict.

### 604 3.2 Meta-data extraction

- An extensive compilation of descriptive data was extracted from each individual selected paper. If a paper included two or more separate, both eligible studies with independent data, then each study resulted in a record in the meta-data database. Data were gathered across four different categories: general study information, methodology, green space, and mental health (Table 1). Responses were coded based on a coding scheme that was discussed beforehand by four of the authors of the report. A complete coding scheme can be found in Appendix C.
- 611



#### General Green space Mental health and Methodology manipulation mental wellbeing First author Type of data (quantitative, Characteristic or type of Typology of outcome qualitative) green space measure Year of publication Type of green space Study category Measurement (cross-sectional, etc) exposure (direct versus instruments used indirect) (quantitative studies) Paper title Hypothesis testing versus Type of green space Unit of observation exploratory study (aggregate or individual) (quantitative studies) (quantitative studies) Journal name Study design Description of green Covariates and confounding variables space (quantitative studies) Environmental Results Country the study took Type of within participants place in design assessment (e.g., (within / mixed studies) residential area) Activities performed in Location the study Presence of a control took place in group the green space Season the study took Data collection method place in Health of population (general, clinical, at-risk) Population type Sample size (number of participants) Sample age (mean and standard deviation) Sample age (range) Sample percentage female Inclusion and exclusion criteria for participation Study duration **Study Frequency** Duration and frequency visit report

#### 613 Table 1. Overview of the information extracted during the meta-data phase

### 615 **3.3 Critical Appraisal**

- 616 During the critical appraisal phase, the risk of bias due to systematic error for each study was
- assessed for each of the three types of study separately. The criteria were developed specifically for
- 618 this systematic review, but based on existing critical appraisal tools, namely the Cochrane
- 619 Collaboration Tool (Higgins & Green, 2011) and the Quality in Prognostic Studies tool (Hayden, van
- der Windt, Cartwright, Côté, & Bombardier, 2013). One custom item was added for the quantitative
- 621 categories, assessing risk of bias related to the green space manipulation.
- 622 A three-level scoring ('high', 'moderate' and 'low' confidence of no bias) was used, with a fourth 'not
- applicable' category. For each scoring option, the criteria were defined at the onset of the critical
- appraisal process. Each paper was assessed independently by two or three members of the expert
- 625 working group.

#### 626 Experimental

627 Risk of bias in the experimental studies was assessed on the basis of seven different categories (see Appendix D, Table D1): selection, performance, attrition, detection, manipulation, reporting, and 628 629 covariates. These categories investigated potential bias during every stage of the study procedure, 630 starting with the selection of the participants and how they related to the true population (selection 631 bias). Performance bias was targeted in the allocation of participants to experimental conditions and 632 the blinding of participants for the manipulations. Attrition was included as dropouts during the 633 experiment, which may cause bias in the outcomes. Detection bias investigated whether there was 634 direct contact between the researcher and the participants. Unique to the type of studies assessed 635 in this systematic review are the environmental manipulations related to the green space type or 636 characteristics. A separate category therefore assessed whether any potential bias could have been 637 introduced to the studies by the choice and execution of green space manipulations. Specifically, the 638 duration and frequency of green space exposure were taken as a measure of potential bias as longer 639 and more frequent exposure may provide better or more consistent results. The two last categories 640 tested for bias in the analysis phase of the study; specifically looking at whether authors reported all 641 outcomes (including non-significant outcomes) and had identified and accounted for covariates in 642 the analysis.

#### 643 **Cross-sectional**

Six categories (selection bias, attrition bias, detection bias, manipulation, reporting bias, covariates)
were employed to assess the risk of bias for the cross-sectional studies (Appendix E, Table E2). These
categories were very similar to those used for the experimental studies, except that no assessment
was made of the performance bias as it is irrelevant for cross-sectional studies which typically do not
contain experimental manipulations.

#### 649 **Qualitative**

- 650 The bias assessment of the qualitative studies differed from the two quantitative categories, due to
- 651 the difference in study characteristics and objectives. Five items were considered in two categories
- 652 (selection bias and qualitative methods) (Appendix F, Table F3). The assessment focused on clarity in
- the description of the sampling used and recruitment of participants. In addition, the qualitative
- 654 method was assessed on whether: independent raters and coders were used in the analysis;
- 655 stakeholders were involved during the analysis; triangulation of methods was implemented.



### 656 **3.4 Synthesis**

- After completion of the critical appraisal, a descriptive synthesis was performed followed by a
   narrative synthesis. Studies scoring low quality (i.e., a 'low' score in the critical appraisal) for more
- than half of the critical appraisal categories were excluded from the synthesis. Thus, studies with
- 660 more than six, four, or three 'low' scores in, respectively, the experimental, cross-sectional, and
- 661 qualitative category. The narrative synthesis consisted of four consecutive steps: revisiting the
- theory of change, performing a preliminary synthesis (for both the descriptive and narrative
- 663 synthesis), exploring relationships within and between studies in the narrative synthesis, and
- assessing the robustness of the synthesis (Popay et al., 2006).
- The theory of change, or the conceptual framework, summarized the expected underlying
  mechanisms of the benefits of green space on mental health. Its purpose was to guide the selection
  of studies, the categorization of studies, as well as performing the synthesis. The theory of change
  has already been described in the theoretical background of this report (section 1.2).
- 669 During the preliminary synthesis, study outcomes were grouped and tabulated per study type
- 670 (experimental, cross-sectional, qualitative) and green space type or green space characteristic,
- 671 divided into ten categories. Seven categories were used to divide the papers according to green
- 672 space types and included: Urban Green Space; Park; Garden; Forest and Woodland; Grassland and
- 673 Meadows; Trees and other plants; Other Green Space Types (miscellaneous category). Two
- 674 categories included papers looking into green space characteristics: Biodiversity; Other Green Space
- 675 Characteristic (miscellaneous category), (see Table 2 for an overview of the study categories). One
- 676 study could represent several categories (e.g., forest and grassland) and could therefore be included
- in more than one category. As the main purpose of the review is to look at differential effects
  between green space types and characteristics, all studies comparing different green space types or
- between green space types and characteristics, all studies comparing different green space types or
   characteristics were gathered for each category and treated separately. A descriptive and narrative
- 680 synthesis was performed for each category.
- 681 Groupings and tabulations were also made per health outcome measure, divided into fourteen
- 682 categories: mental health, subjective wellbeing, affect, vitality, restorative outcomes, severity
- 683 mental disorder, prevalence mental disorder, perceived stress, physiological stress, satisfaction with
- 684 life, quality of life, behavioural problems, brain activity, and miscellaneous. See Table 3 for more
- 685 information of the health outcome categories.

686

#### 688 Table 2. Green space categories used for the descriptive and narrative synthesis

| Green space category   | Description                                             | Examples                                                              |
|------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|
| Urban green space      | Urban land covered by vegetation, which                 | Street trees, green                                                   |
|                        | does not fall (solely) in one of the other              | vegetation coverage in                                                |
|                        | categories such as parks or gardens.                    | the city, informal green spaces.                                      |
| Park                   | An area of vegetation used for recreation.              | Urban park, district park,<br>neighbourhood park                      |
| Garden                 | An area where plants and flowers are                    | Backyard or botanical                                                 |
|                        | cultivated. This can be either a private                | garden                                                                |
|                        | garden (surrounding the house) or a public garden       |                                                                       |
| Forest and woodland    | An area mainly covered with trees and undergrowth       | Deciduous, coniferous,<br>mixed forest                                |
| Grassland and meadows  | An area mainly covered with grass                       | Mowed lawn, improved<br>grassland (used for<br>grazing), semi-natural |
|                        |                                                         | grassland                                                             |
| Trees and other plants | Studies with a specific focus on plants,                | Tree canopy cover,                                                    |
|                        | shrubs, or vegetation cover                             | vegetation cover shrubs                                               |
| Biodiversity           | Studies focusing on the diversity in plants and animals | Flora richness, fauna<br>richness                                     |

689

692

- 690 For each study, the population type was also noted. A distinction was made between 18 different
- 691 population types:

Local residents (people living in the proximity of the target green space) National residents (respondents were part of a national survey or national panel) Urban residents (a study targeted specifically those living in the city) Rural residents (a study targeted specifically those living in rural areas) Green space visitors Patients mental disorder Patients physical disorder Employees Students Schoolchildren Pupils Adolescents Elderly Hikers / Athletes Online panel members (without being nationally representative) **Conservation volunteers** University visitors Volunteers (people who volunteered to participate in the study) Young mothers



- Last, a distinction was made between studies with direct exposure versus those with indirect
- 694 representations of green space (e.g., videos and Virtual Reality) within the experimental study
- 695 category, as no indirect exposure was present in the cross-sectional and qualitative category.
- 696 After these overviews were created, results were further analysed by looking at differences in
- 697 possible mediators, such as type of activity, the study design, the sample, as well as the risk of bias
- 698 (outcomes from the critical appraisal), to understand the observed heterogeneity in outcomes.
- 699 Conceptual maps were created to reveal patterns in the outcomes and to further explain
- heterogeneity. Lastly, triangulation was also assessed, both in terms of methodology used and
- 701 background of the researchers.
- The fourth, and final, step in the synthesis was to investigate the strengths and weaknesses of the
- systematic review process and, subsequently, the robustness of the outcomes. This was done by critically reflecting upon the synthesis phase, and by looking at the generalisability -or relevance- or
- critically reflecting upon the synthesis phase, and by looking at the generalisability -or relevance- of
   the synthesis product to the general population. The outcomes of this assessment are reported in
- 706 the Discussion.
- 707

# 709 Table 3. Mental health categories used for the descriptive and narrative synthesis

| Mental healthOverall score for mental health,<br>encompassing multiple aspects of mental<br>health (e.g., depression and anxiety) and<br>not specifically focusing on one mental<br>disorderQuestionnaire [77]Subjective wellbeingSubjective ratings of wellbeing,<br>encompassing different aspects of<br>wellbeing such as happiness, lifeWarwick-Edinburgh<br>Mental Wellbeing Scale<br>wellbeing such as happiness, lifeWarwick-Edinburgh<br>Mental Wellbeing ScaleAffectMomentary measurements of mood and<br>affective state, including for instance<br>positive and negative affect but also state<br>anxietyPositive And Negative<br>Affect Schedule [79]VitalityPositive energy available to the self<br>Short Form-36 [80]Vitality subscale of the<br>Short Form-36 [80]Restorative outcomesMeasures focused on the restorative<br>effects of nature, including psychological<br>benefits such as relaxation and forgetting<br>worriesCES-D (depression) [82]Severity mentalSeverity of a specific mental disorder,<br>medicationPrevalence of ADHDPrevalence mental<br>disorderHow often a specific mental disorder,<br>medicationPrevalence of ADHDPreviewed stress<br>they are under either right now or over a<br>period of timePrevalence of ADHDPhysiological stress<br>they are under either right now or over a<br>period of timeSatisfaction With Life Scale<br>[84]Quality of life<br>duality of life is the general wellbeing of an<br>individual and can encompass multiple<br>heatth, bysical<br>heatth, bysical< | Green space category   | Description                               | Example measurement         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------|-----------------------------|
| health (e.g., depression and anxiety) and<br>not specifically focusing on one mental<br>disorderWarwick-Edinburgh<br>Mental Wellbeing Scale<br>wellbeing such as happiness, life<br>satisfaction, and psychological functioning.AffectMomentary measurements of mood and<br>affective state, including for instance<br>positive and negative affect but also state<br>anxietyPositive And Negative<br>Affect Schedule [79]<br>Positive energy available to the self<br>benefits such as relaxation and forgetting<br>worriesVitality subscale of the<br>Short Form-36 [80]Restorative outcomesMeasures focused on the restorative<br>positive and specific mental disorder,<br>medicationCES-D (depression) [82]Severity mental<br>disorderSeverity of a specific mental disorder,<br>medicationPrevalence of ADHD<br>Prevalence mental<br>healty are under either right now or over a<br>period of timePrevalence of ADHDPhysiological stressThe amount of stress a person perceives<br>the yare under either right now or over a<br>period of timePreceived Stress Scale [83]Quality of lifeQuality of life is the general wellbeing of<br>antivity of the autonomic nervous systemSatisfaction With Life Scale<br>[84]Quality of lifeQuality of life is the general wellbeing of a<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWord Health Organization                                                                                                                                                                                                                                                                                                             | Mental health          | Overall score for mental health,          | General Health              |
| Inot specifically focusing on one mental<br>disorderVarwick-Edinburgh<br>Mental Wellbeing ScaleSubjective wellbeingSubjective ratings of wellbeing,<br>encompassing different aspects of<br>mellbeing such as happiness, life<br>satisfaction, and psychological functioning.<br>Affect(78)AffectMomentary measurements of mood and<br>affective state, including for instance<br>positive and negative affect but also state<br>anxietyPositive And Negative<br>Affect Schedule [79]VitalityPositive energy available to the self<br>sort Form-36 [80]Vitality subscale of the<br>Short Form-36 [80]Restorative outcomesMeasures focused on the restorative<br>effects of nature, including psychological<br>benefits such as relaxation and forgetting<br>worriesRestorative Outcomes<br>Scale [81]Severity mental<br>disorderSeverity of a specific mental disorder,<br>expressed in level of symptoms or use of<br>medicationEES-D (depression) [82]Prevalence mental<br>disorderHow often a specific mental disorder,<br>ethey are under either right now or over a<br>percived stressPrevalence of ADHDPreveileved stress<br>they are under either right now or over a<br>percived of timePrevalence of ADHDPhysiological stress<br>patisfaction with lifeGlobal life satisfaction<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWord Health Organization<br>guality-of-Life Assessment<br>short version [85]                                                                                                                                                                                                                                                      |                        | encompassing multiple aspects of mental   | Questionnaire [77]          |
| disorderSubjective ratings of wellbeing,<br>encompassing different aspects of<br>wellbeing such as happiness, life<br>satisfaction, and psychological functioning.Warwick-Edinburgh<br>Mental Wellbeing Scale<br>[78]AffectMomentary measurements of mood and<br>affective state, including for instance<br>positive and negative affect but also state<br>anxietyPositive And Negative<br>Affect Schedule [79]VitalityPositive energy available to the self<br>store of nature, including psychological<br>benefits such as relaxation and forgetting<br>worriesVitality subscale of the<br>Short Form-36 [80]Restorative outcomesMeasures focused on the restorative<br>effects of nature, including psychological<br>benefits such as relaxation and forgetting<br>worriesCES-D (depression) [82]Severity mental<br>disorderSeverity of a specific mental disorder,<br>medicationPrevalence of ADHDPrevalence mental<br>disorderHow often a specific mental disorder<br>occurs within the general populationPerceived StressPreceived stressThe amount of stress a person perceives<br>they are under either right now or over a<br>period of timeHeart Rate VariabilitySatisfaction with life<br>(Quality of life is the general wellbeing of a<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization<br>Quality-of-Life Assessment<br>short version [85]                                                                                                                                                                                                                                                                                          |                        | health (e.g., depression and anxiety) and |                             |
| Subjective wellbeingSubjective ratings of wellbeing,<br>encompassing different aspects of<br>wellbeing such as happiness, life<br>satisfaction, and psychological functioning.Warwick-Edinburgh<br>Mental Wellbeing Scale<br>[78]AffectMomentary measurements of mood and<br>affective state, including for instance<br>positive and negative affect but also state<br>anxietyPositive And Negative<br>Affect Schedule [79]VitalityPositive energy available to the self<br>short Form-36 [80]Vitality subscale of the<br>Short Form-36 [80]Restorative outcomesMeasures focused on the restorative<br>effects of nature, including psychological<br>benefits such as relaxation and forgetting<br>worriesRestorative OutcomesSeverity mental<br>disorderSeverity of a specific mental disorder,<br>medicationCES-D (depression) [82]Prevalence mental<br>disorderHow often a specific mental disorder<br>occurs within the general population<br>period of timePrevalence of ADHDPhysiological stress<br>attivity of the autonomic nervous systemHeart Rate VariabilitySatisfaction with life<br>Global life satisfactionSatisfaction With Life Scale<br>[84]Quality of life<br>healty, social healthQuality-of-Life Assessment<br>short version [85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | not specifically focusing on one mental   |                             |
| encompassing different aspects of<br>wellbeing such as happiness, life<br>satisfaction, and psychological functioning.Mental Wellbeing Scale<br>[78]AffectMomentary measurements of mood and<br>affective state, including for instance<br>positive and negative affect but also state<br>anxietyPositive And Negative<br>Affect Schedule [79]VitalityPositive energy available to the selfVitality subscale of the<br>Short Form-36 [80]Restorative outcomesMeasures focused on the restorative<br>effects of nature, including psychological<br>benefits such as relaxation and forgetting<br>worriesRestorative Outcomes<br>Scale [81]Severity mental<br>disorderSeverity of a specific mental disorder,<br>medicationCES-D (depression) [82]Prevalence mental<br>disorderHow often a specific mental disorder<br>occurs within the general populationPrevalence of ADHDPreceived stressThe amount of stress a person perceives<br>they are under either right now or over a<br>period of timePreceived Stress Scale [83]Physiological stressPhysiological responses to stress, or<br>activity of the autonomic nervous systemSatisfaction With Life Scale<br>[84]Quality of lifeQuality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWord Health Organization                                                                                                                                                                                                                                                                                                                                                                |                        |                                           |                             |
| Affectwellbeing such as happiness, life<br>satisfaction, and psychological functioning.[78]AffectMomentary measurements of mood and<br>affective state, including for instance<br>positive and negative affect but also state<br>anxietyPositive And Negative<br>Affect Schedule [79]VitalityPositive energy available to the selfVitality subscale of the<br>Short Form-36 [80]Restorative outcomesMeasures focused on the restorative<br>effects of nature, including psychological<br>benefits such as relaxation and forgetting<br>worriesRestorative Outcomes<br>Scale [81]Severity mental<br>disorderSeverity of a specific mental disorder,<br>medicationCES-D (depression) [82]Prevalence mental<br>disorderHow often a specific mental disorder<br>occurs within the general populationPrevalence of ADHDPerceived stressThe amount of stress a person perceives<br>they are under either right now or over a<br>period of timePerceived Stress Scale [83]Physiological stressPhysiological responses to stress, or<br>activity of the autonomic nervous systemSatisfaction With Life Scale<br>[84]Quality of lifeQuality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWord Health Organization                                                                                                                                                                                                                                                                                                                                                                                                                         | Subjective wellbeing   |                                           | -                           |
| Affectsatisfaction, and psychological functioning.AffectMomentary measurements of mod and<br>affective state, including for instance<br>positive and negative affect but also state<br>anxietyPositive And Negative<br>Affect Schedule [79]VitalityPositive energy available to the selfVitality subscale of the<br>Short Form-36 [80]Restorative outcomesMeasures focused on the restorative<br>effects of nature, including psychological<br>benefits such as relaxation and forgetting<br>worriesRestorative Outcomes<br>Scale [81]Severity mental<br>disorderSeverity of a specific mental disorder,<br>expressed in level of symptoms or use of<br>medicationCES-D (depression) [82]Prevalence mental<br>disorderHow often a specific mental disorder<br>occurs within the general populationPrevalence of ADHDPreceived stressThe amount of stress a person perceives<br>they are under either right now or over a<br>period of timeHeart Rate VariabilityPhysiological stressGlobal life satisfactionSatisfaction with life<br>(Global life satisfactionSatisfaction With Life Scale<br>[84]Quality of lifeQuality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                           | -                           |
| AffectMomentary measurements of mood and<br>affective state, including for instance<br>positive and negative affect but also state<br>anxietyPositive and negative affect but also state<br>(Affect Schedule [79])VitalityPositive energy available to the selfVitality subscale of the<br>Short Form-36 [80]Restorative outcomesMeasures focused on the restorative<br>effects of nature, including psychological<br>benefits such as relaxation and forgetting<br>worriesRestorative Outcomes<br>Scale [81]Severity mental<br>disorderSeverity of a specific mental disorder,<br>expressed in level of symptoms or use of<br>medicationCES-D (depression) [82]Prevalence mental<br>disorderHow often a specific mental disorder<br>occurs within the general populationPrevalence of ADHDPrevalence stressThe amount of stress a person perceives<br>they are under either right now or over a<br>period of timeHeart Rate VariabilityPhysiological stressGlobal life satisfactionSatisfaction with life<br>(Global life stis factionSatisfaction With Life Scale<br>[84]Quality of lifeQuality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                                           | [78]                        |
| affective state, including for instance<br>positive and negative affect but also state<br>anxietyAffect Schedule [79]VitalityPositive energy available to the selfVitality subscale of the<br>Short Form-36 [80]Restorative outcomesMeasures focused on the restorative<br>effects of nature, including psychological<br>benefits such as relaxation and forgetting<br>worriesRestorative OutcomesSeverity mental<br>disorderSeverity of a specific mental disorder,<br>emedicationCES-D (depression) [82]Prevalence mental<br>disorderHow often a specific mental disorder<br>medicationPrevalence of ADHDPreceived stressThe amount of stress a person perceives<br>they are under either right now or over a<br>period of timePerceived Stress Scale [83]Physiological stressPhysiological responses to stress, or<br>activity of the autonomic nervous systemHeart Rate VariabilitySatisfaction with life<br>Quality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                                           |                             |
| positive and negative affect but also state<br>anxietyVitalityPositive energy available to the selfVitality subscale of the<br>Short Form-36 [80]Restorative outcomesMeasures focused on the restorative<br>effects of nature, including psychological<br>benefits such as relaxation and forgetting<br>worriesRestorative Outcomes<br>Scale [81]Severity mental<br>disorderSeverity of a specific mental disorder,<br>expressed in level of symptoms or use of<br>medicationCES-D (depression) [82]Prevalence mental<br>disorderHow often a specific mental disorder<br>occurs within the general population<br>period of timePrevalence of ADHDPhysiological stressThe amount of stress a person perceives<br>they are under either right now or over a<br>period of timeHeart Rate VariabilitySatisfaction with lifeGlobal life satisfactionSatisfaction With Life Scale<br>[84]Quality of lifeQuality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization<br>Quality-of-Life Assessment<br>short version [85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Affect                 |                                           | -                           |
| AnxietyVitalityPositive energy available to the selfVitality subscale of the<br>Short Form-36 [80]Restorative outcomesMeasures focused on the restorative<br>effects of nature, including psychological<br>benefits such as relaxation and forgetting<br>worriesRestorative OutcomesSeverity mentalSeverity of a specific mental disorder,<br>expressed in level of symptoms or use of<br>medicationCES-D (depression) [82]Prevalence mentalHow often a specific mental disorder<br>occurs within the general populationPrevalence of ADHDPerceived stressThe amount of stress a person perceives<br>they are under either right now or over a<br>period of timePerceived Stress Scale [83]Physiological stressPhysiological responses to stress, or<br>activity of the autonomic nervous systemHeart Rate VariabilitySatisfaction with lifeQuality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization<br>Quality-of-Life Assessment<br>short version [85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                                           | Affect Schedule [79]        |
| VitalityPositive energy available to the selfVitality subscale of the<br>Short Form-36 [80]Restorative outcomesMeasures focused on the restorative<br>effects of nature, including psychological<br>benefits such as relaxation and forgetting<br>worriesRestorative OutcomesSeverity mentalSeverity of a specific mental disorder,<br>expressed in level of symptoms or use of<br>medicationCES-D (depression) [82]Prevalence mental<br>disorderHow often a specific mental disorder<br>occurs within the general populationPrevalence of ADHDPerceived stressThe amount of stress a person perceives<br>they are under either right now or over a<br>period of timePrevalence of ADHDPhysiological stressPhysiological responses to stress, or<br>activity of the autonomic nervous systemHeart Rate VariabilitySatisfaction with life<br>Quality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization<br>Quality-of-Life Assessment<br>short version [85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                                           |                             |
| Restorative outcomesMeasures focused on the restorative<br>effects of nature, including psychological<br>benefits such as relaxation and forgetting<br>worriesRestorative Outcomes<br>Scale [81]Severity mentalSeverity of a specific mental disorder,<br>expressed in level of symptoms or use of<br>medicationCES-D (depression) [82]Prevalence mentalHow often a specific mental disorder<br>occurs within the general populationPrevalence of ADHDPerceived stressThe amount of stress a person perceives<br>they are under either right now or over a<br>period of timePerceived Stress Scale [83]Physiological stressPhysiological responses to stress, or<br>activity of the autonomic nervous systemHeart Rate VariabilitySatisfaction with lifeGlobal life satisfactionSatisfaction With Life Scale<br>[84]Quality of lifeQuality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . <i></i>              |                                           |                             |
| Restorative outcomesMeasures focused on the restorative<br>effects of nature, including psychological<br>benefits such as relaxation and forgetting<br>worriesRestorative Outcomes<br>Scale [81]Severity mental<br>disorderSeverity of a specific mental disorder,<br>expressed in level of symptoms or use of<br>medicationCES-D (depression) [82]Prevalence mental<br>disorderHow often a specific mental disorder<br>occurs within the general populationPrevalence of ADHDPerceived stressThe amount of stress a person perceives<br>they are under either right now or over a<br>period of timePerceived Stress Scale [83]Physiological stressPhysiological responses to stress, or<br>activity of the autonomic nervous systemHeart Rate VariabilitySatisfaction with life<br>Quality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization<br>Quality-of-Life Assessment<br>short version [85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vitality               | Positive energy available to the self     |                             |
| effects of nature, including psychological<br>benefits such as relaxation and forgetting<br>worriesScale [81]Severity mental<br>disorderSeverity of a specific mental disorder,<br>expressed in level of symptoms or use of<br>medicationCES-D (depression) [82]Prevalence mental<br>disorderHow often a specific mental disorder<br>occurs within the general population<br>perceived stressPrevalence of ADHDPerceived stressThe amount of stress a person perceives<br>they are under either right now or over a<br>period of timePerceived Stress Scale [83]Physiological stressPhysiological responses to stress, or<br>activity of the autonomic nervous systemHeart Rate VariabilitySatisfaction with lifeGlobal life satisfaction<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization<br>guality-of-Life Assessment<br>short version [85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Destarative outcomes   | Massures focused on the restarative       |                             |
| benefits such as relaxation and forgetting<br>worriesCES-D (depression) [82]Severity mental<br>disorderSeverity of a specific mental disorder,<br>expressed in level of symptoms or use of<br>medicationCES-D (depression) [82]Prevalence mental<br>disorderHow often a specific mental disorder<br>occurs within the general populationPrevalence of ADHDPerceived stressThe amount of stress a person perceives<br>they are under either right now or over a<br>period of timePerceived Stress Scale [83]Physiological stressPhysiological responses to stress, or<br>activity of the autonomic nervous systemHeart Rate VariabilitySatisfaction with lifeGlobal life satisfaction<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization<br>short version [85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Residiative outcomes   |                                           |                             |
| Severity mental<br>disorderSeverity of a specific mental disorder,<br>expressed in level of symptoms or use of<br>medicationCES-D (depression) [82]Prevalence mental<br>disorderHow often a specific mental disorder<br>occurs within the general populationPrevalence of ADHDPerceived stressThe amount of stress a person perceives<br>they are under either right now or over a<br>period of timePerceived Stress Scale [83]Physiological stressPhysiological responses to stress, or<br>activity of the autonomic nervous systemHeart Rate VariabilitySatisfaction with lifeGlobal life satisfactionSatisfaction With Life Scale<br>[84]Quality of lifeQuality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization<br>sort version [85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                                           |                             |
| disorderexpressed in level of symptoms or use of<br>medicationPrevalence of ADHDPrevalence mental<br>disorderHow often a specific mental disorder<br>occurs within the general populationPrevalence of ADHDPerceived stressThe amount of stress a person perceives<br>they are under either right now or over a<br>period of timePerceived Stress Scale [83]Physiological stressPhysiological responses to stress, or<br>activity of the autonomic nervous systemHeart Rate VariabilitySatisfaction with lifeGlobal life satisfactionSatisfaction With Life Scale<br>[84]Quality of lifeQuality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                                           |                             |
| Prevalence mental<br>disorderHow often a specific mental disorder<br>occurs within the general populationPrevalence of ADHDPerceived stressThe amount of stress a person perceives<br>they are under either right now or over a<br>period of timePerceived Stress Scale [83]Physiological stressPhysiological responses to stress, or<br>activity of the autonomic nervous systemHeart Rate VariabilitySatisfaction with lifeGlobal life satisfactionSatisfaction With Life Scale<br>[84]Quality of lifeQuality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization<br>Quality-of-Life Assessment<br>short version [85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Severity mental        | Severity of a specific mental disorder,   | CES-D (depression) [82]     |
| disorderoccurs within the general populationPerceived stressThe amount of stress a person perceives<br>they are under either right now or over a<br>period of timePerceived Stress Scale [83]Physiological stressPhysiological responses to stress, or<br>activity of the autonomic nervous systemHeart Rate VariabilitySatisfaction with lifeGlobal life satisfactionSatisfaction With Life Scale<br>[84]Quality of lifeQuality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization<br>Short version [85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | disorder               |                                           |                             |
| Perceived stressThe amount of stress a person perceives<br>they are under either right now or over a<br>period of timePerceived Stress Scale [83]Physiological stressPhysiological responses to stress, or<br>activity of the autonomic nervous systemHeart Rate VariabilitySatisfaction with lifeGlobal life satisfactionSatisfaction With Life Scale<br>[84]Quality of lifeQuality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization<br>short version [85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prevalence mental      | How often a specific mental disorder      | Prevalence of ADHD          |
| they are under either right now or over a<br>period of timeHeart Rate VariabilityPhysiological stressPhysiological responses to stress, or<br>activity of the autonomic nervous systemHeart Rate VariabilitySatisfaction with lifeGlobal life satisfactionSatisfaction With Life Scale<br>[84]Quality of lifeQuality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization<br>short version [85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | disorder               | occurs within the general population      |                             |
| Physiological stressperiod of timeHeart Rate VariabilityPhysiological responses to stress, or<br>activity of the autonomic nervous systemHeart Rate VariabilitySatisfaction with lifeGlobal life satisfactionSatisfaction With Life Scale<br>[84]Quality of lifeQuality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization<br>Short version [85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Perceived stress       | The amount of stress a person perceives   | Perceived Stress Scale [83] |
| Physiological stressPhysiological responses to stress, or<br>activity of the autonomic nervous systemHeart Rate VariabilitySatisfaction with lifeGlobal life satisfactionSatisfaction With Life Scale<br>[84]Quality of lifeQuality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization<br>Short version [85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                                           |                             |
| Satisfaction with lifeactivity of the autonomic nervous systemSatisfaction with lifeGlobal life satisfactionSatisfaction With Life Scale<br>[84]Quality of lifeQuality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization<br>Quality-of-Life Assessment<br>short version [85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                           |                             |
| Satisfaction with lifeGlobal life satisfactionSatisfaction With Life Scale<br>[84]Quality of lifeQuality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization<br>Quality-of-Life Assessment<br>short version [85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Physiological stress   |                                           | Heart Rate Variability      |
| Quality of life[84]Quality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization<br>Quality-of-Life Assessment<br>short version [85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                           |                             |
| Quality of lifeQuality of life is the general wellbeing of an<br>individual and can encompass multiple<br>factors such as mental health, physical<br>health, social healthWorld Health Organization<br>Quality-of-Life Assessment<br>short version [85]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Satisfaction with life | Global life satisfaction                  |                             |
| individual and can encompass multiple Quality-of-Life Assessment<br>factors such as mental health, physical short version [85]<br>health, social health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                           |                             |
| factors such as mental health, physical short version [85]<br>health, social health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Quality of life        |                                           | -                           |
| health, social health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                                           | •                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                                           | short version [85]          |
| Benavioural problems Disruptive benaviour such as hyperactivity Strengths and Difficulties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dehovievnel muchleme   | -                                         | Strongthe and Difficulties  |
| or agitation. Questionnaire [86]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Benavioural problems   |                                           | •                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prain activity         | -                                         |                             |
| Brain activity Brain activity measured with (mobile) EEG (mobile) EEG<br>or fMRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Drain activity         |                                           |                             |
| Miscellaneous Sleep quality, self-image, social contacts,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Miscellaneous          |                                           |                             |
| and suicide rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                           |                             |

710

## 712 **4. Outcomes**

#### 713 4.1 Search outcomes

The searches of MEDLINE and Scopus were undertaken on 28 June 2019, and they identified 14,305

records (Table 4). The second search of Scopus was undertaken on 23 August 2019 and retrieved

716 4,033 records. Eight test-list records that were not identified by the searches were added to the

717 Endnote library: seven records were loaded to Covidence. Two records were identified from the

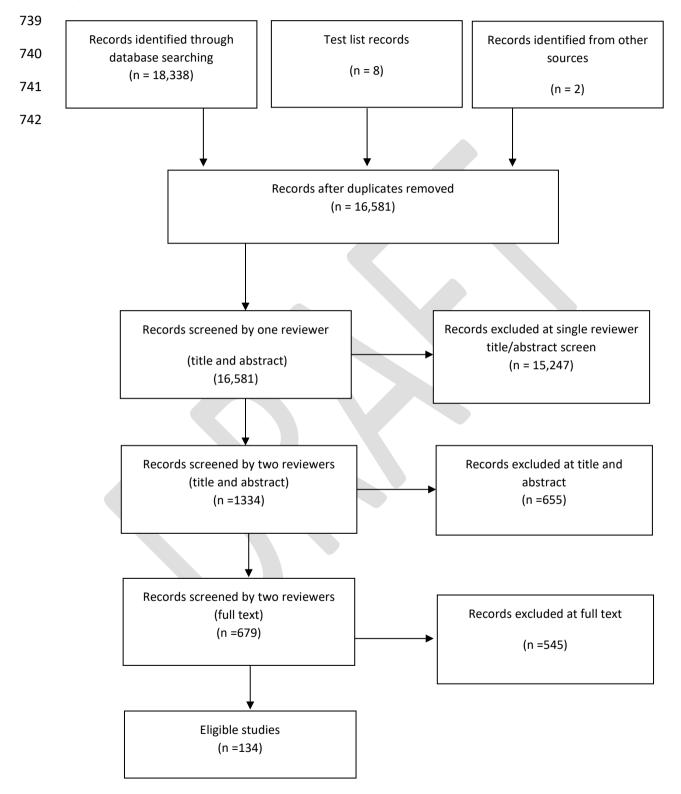
718 Blue space review. Following deduplication, 16,581 records were assessed for relevance.

| Resource                                         | Number of records identified |
|--------------------------------------------------|------------------------------|
| Ovid MEDLINE ALL                                 | 8481                         |
| Scopus search 1                                  | 5824                         |
| Scopus search 2                                  | 4033                         |
| Test set records (not retrieved by the searches) | 8                            |
| Records identified from other sources            | 2                            |
| otal number of records retrieved                 | 18,348                       |
| otal number of records after deduplication       | 16,581                       |

#### 719 Table 4. Literature search results

720

After deduplication, 15,247 records were rejected based on an assessment of the title. These
 records were about green spaces but not about human health, or were about human health but not
 about green spaces, or about neither topic, but were retrieved because of the multiple meanings of
 some terms in the search.


1,334 records were loaded to Covidence for title and abstract screening. 655 records were rejected
on the basis of information in the title and abstract. Two hand-selected articles (from the blue space
systematic review) were also included in the set. The remaining 679 records were assessed based on
the full text of which 526 records were excluded, leaving a total of 134 papers. Fifty-five of these
studies had a cross-sectional design, 67 papers (68 studies) had an experimental design, and 12
qualitative studies were included (see Figure x2). The included studies are summarized in Tables 5, 6,
and 7.

- 732
- 733
- 734
- / 3
- 735

736

#### 737

#### 738 Figure 2: PRISMA Flowchart of study inclusion



| Article                  | Country | Green<br>space<br>category<br>/ quality | Green space description                                                                                                                                                                                                    | Type<br>Char | Participants                   | General<br>/ Clinical | Health<br>outcome           | Results                                                                                                                                                                                                                                                                                                       |
|--------------------------|---------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------|-----------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sianoja<br>2018 [87]     | Finland | Urban<br>green<br>space                 | urban green space close to<br>participants work versus<br>relaxation exercises<br>(control group)                                                                                                                          | Туре         | Employees                      | General               | Psychological<br>stress     | Strain was significantly lower in the afternoon<br>on days when participants did their lunchtime<br>walks in urban green space (and also for those<br>doing the relaxation exercises). Fatigue was<br>unaffected by the walk (but lower in the<br>afternoon when relaxation exercises were<br>done).          |
| Neale 2017<br>[88]       | UK      | Urban<br>green<br>space                 | Three walking routes:<br>urban green, urban busy,<br>urban quiet (all<br>participants walked 2 of 3<br>routes)                                                                                                             | Туре         | Elderly                        | General               | Affect                      | Excitement was lower in urban green than in<br>urban busy, and frustration was higher in urban<br>green than in urban quiet. Engagement was<br>higher in urban green than in the other two<br>urban areas.                                                                                                    |
| Aspinall<br>2015<br>[89] | UK      | Urban<br>green<br>space                 | Green space (bordering<br>lawns, playing fields with<br>trees), vs busy shopping<br>street and busy<br>commercial district                                                                                                 | Туре         | Students                       | General               | Brain activity              | (no significance testing) Frustration,<br>engagement or alertness, and long term<br>excitement were lower and meditation higher<br>in green space than in shopping street.<br>Engagement or alertness was lower in the<br>green space than in the shopping street.                                            |
| Coventry<br>2019<br>[90] | UK      | Urban<br>green<br>space                 | 1) mosaic of fenland,<br>meadow and woodland; 2)<br>community green space, a<br>mix of grassland and<br>wood-land; 3) large green<br>field with surrounding<br>woodland adjacent to a<br>semi-urban housing<br>development | Туре         | conservatio<br>n<br>volunteers | General               | Perceived<br>stress, affect | Decrease in stress over all locations (pre-post).<br>No difference between the 3 locations.<br>Magnitude of effect may be largest in<br>community green space. An increase in hedonic<br>tone and a decrease in arousal was found over<br>all locations (pre-post). No difference between<br>the 3 locations. |

## Table 5. Overview of the included studies; experimental

| Article                 | Country | Green<br>space<br>category<br>/ quality                          | Green space description                                                                                                                                                                                                             | Type<br>Char      | Participants               | General<br>/ Clinical | Health<br>outcome                                                 | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------|---------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|-----------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Yoshida<br>2015<br>[91] | Japan   | Urban<br>green<br>space                                          | Different locations on<br>campus differing in<br>greenness, ground<br>cover, tree canopy. Open<br>space vs tree canopy, in<br>relation with<br>temperature                                                                          | Type<br>&<br>Char | Students                   | General               | Affect                                                            | Anxiety-hostility, fatigue, and total mood<br>disturbance scores were better under the tree<br>canopy than in the sunny open space (no effect<br>on the other subdimensions).                                                                                                                                                                                                                                                                              |
| Carrus<br>2015<br>[92]  | Italy   | Urban<br>green<br>space,<br>park,<br>forest,<br>biodivers<br>ity | Low vs high biodiversity<br>in urban vs peri-urban<br>green space (low, urban:<br>urban square with trees;<br>urban, high: urban park;<br>peri-urban, low:<br>pinewood forest<br>plantation; peri-urban,<br>high: protected reserve | Type<br>&<br>Char | Green<br>space<br>visitors | General               | Subjective<br>wellbeing                                           | Better scores for peri-urban green areas than<br>for urban areas on wellbeing and higher scores<br>for high biodiversity green areas than for low<br>biodiversity green areas. Reading, talking, and<br>socializing in the green setting scored<br>significantly lower than contemplating the<br>setting and walking, exercising, No difference in<br>wellbeing score between contemplating and<br>walking. Greater wellbeing scores with longer<br>visits |
| Chang<br>2019<br>[93]   | USA     | Park,<br>other<br>green<br>space<br>type                         | Park vs wilderness type<br>setting vs fitness and<br>recreation facility                                                                                                                                                            | Туре              | Green<br>space<br>visitors | General               | Physiological<br>stress,<br>perceived<br>stress                   | Salivary cortisol decreased significantly after<br>the wilderness setting. Decrease in demands<br>and worries and increase in joy at all three<br>sites. Stronger increase in joy at the wilderness<br>setting.                                                                                                                                                                                                                                            |
| Orsega-<br>Smith [94]   | USA     | Park                                                             | Frequency and duration<br>of park use and level of<br>physical activity                                                                                                                                                             | Туре              | Elderly                    | General               | Perceived<br>stress,<br>physiological<br>stress, mental<br>health | People with high stress levels stayed in the park<br>longer than those with low stress levels.<br>Visitors that stayed in the park longer than one<br>hour had lower blood pressure after the visit.<br>No relation between stress levels and visit<br>frequency. No effect was found on mental<br>health.                                                                                                                                                 |



| Article                         | Country   | Green<br>space<br>category<br>/ quality | Green space description                                                                                                                                            | Type<br>Char | Participants                     | General<br>/ Clinical | Health<br>outcome                                        | Results                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|-----------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------|-----------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hull 1995<br>[95]               | USA       | Park                                    | Time spent in the park                                                                                                                                             | Туре         | Green<br>space<br>visitors       | General               | Affect                                                   | A longer stay in the park resulted in lower<br>anxiety. Effects were more pronounced for<br>high-stress individuals. Tiredness also increased<br>with longer time in the park, no difference<br>found for high vs low stress individuals here. No<br>effect of park visit on calm and energy.                                                          |
| Li 2019<br>[96]                 | China     | Park                                    | 15 different parks; time<br>spent on hard surface,<br>lawn, under tree cover,<br>in water, on the trail, in<br>children's play areas,<br>fitness area, total steps | Туре         | Elderly                          | General               | Affect                                                   | Lower anxiety, depression, higher relaxation<br>and contentment after the park visit. Active<br>park lingerers had higher relaxation and more<br>contentment than active walkers. No difference<br>anxiety and depression, nor with a third group<br>of elderly; passive scanner.                                                                      |
| Grazulevici<br>ene 2016<br>[97] | Lithuania | Park                                    | Pine park versus busy<br>urban street                                                                                                                              | Туре         | Patients<br>physical<br>disorder | Clinical              | Affect,<br>physiological<br>stress                       | Cortisol decreased after the walk in the park on<br>day 1, but not for the urban area. After 7 days,<br>blood pressure was lower for the park but not<br>the urban group. Positive affect increased and<br>negative affect decreased after the walk in the<br>park on day 1, but not for the urban area. For<br>urban walks negative affect increased. |
| Gidlow<br>2016<br>[98]          | UK        | Park                                    | Park vs foothpath along<br>a canal vs urban<br>residential street                                                                                                  | Туре         | Local<br>residents               | General               | Affect,<br>perceived<br>stress,<br>restorative<br>effect | Mood improved in all three environments,<br>restorative effect was higher in the urban park<br>(and along the canal) than in the urban<br>environment. Cortisol levels decreased in all<br>three environments.                                                                                                                                         |

| Article                 | Country  | Green<br>space<br>category<br>/ quality | Green space description                                          | Type<br>Char      | Participants               | General<br>/ Clinical | Health<br>outcome                                            | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------|----------|-----------------------------------------|------------------------------------------------------------------|-------------------|----------------------------|-----------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mokhtar<br>2018<br>[99] | Malaysia | Park                                    | Urban park versus city<br>area                                   | Туре              | Students                   | General               | Affect,<br>physiological<br>stress,<br>restorative<br>effect | Cortisol levels were lower in the urban park<br>than in the urban area. Cortisol increased over<br>time in the urban, but not in the urban green<br>area. Systolic blood pressure and pulse rate<br>were lower in the urban green space after the<br>experiment, and were lower at the end of the<br>experiment than in the urban area. No effect<br>found on diastolic blood pressure. All six<br>subscales of the POMS were better for the<br>urban park after the experiment than for the<br>urban area. Tension and confusion decreased in<br>the urban park, whereas tension, depression,<br>anger, fatigue, and confusion increased in the<br>urban area. Higher restorative outcomes for<br>the urban park than for the urban area. |
| Wang<br>2016*<br>[100]  | China    | Park                                    | Videos of urban parks<br>differing in openness, vs<br>urban road | Type<br>&<br>Char | Students                   | General               | Affect,<br>physiological<br>stress                           | Anxiety decreased while viewing all urban parks<br>compared to the urban roadway. Skin<br>conductance reduced when viewing lawn (with<br>and without people), a small lake and a<br>walkway. Heart rate was lower after viewing a<br>small lake and the walkway. No effects on skin<br>conductance were found for plaza and urban<br>roadway, no effect found on HR for lawn, plaza,<br>and urban roadway.                                                                                                                                                                                                                                                                                                                                 |
| Yuen 2019<br>[101]      | USA      | Park                                    | Three different parks                                            | Туре              | Green<br>space<br>visitors | General               | Affect,<br>satisfaction<br>with life                         | Affect increased after the park visit, satisfaction<br>with life also increased after the park visit. Time<br>spent in the park was related with satisfaction<br>outcomes (10,5 min visit predicted the highest<br>improvement)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

\* Indirect green space manipulation (i.e., using a representation of nature rather than real exposure, such as a video, image or Virtual Reality)

| Article                      | Country   | Green<br>space<br>category<br>/ quality                | Green space description                                                                                                                      | Type<br>Char      | Participants                                                                 | General<br>/ Clinical | Health<br>outcome       | Results                                                                                                                                                                                                                                                                                   |
|------------------------------|-----------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------|-----------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Guéguen<br>2016<br>[102]     | France    | Park                                                   | Historic park                                                                                                                                | Туре              | Green<br>space<br>visitors                                                   | General               | Affect                  | Affect was significantly better for those that<br>were asked after their park visit (as opposed to<br>those that reported their affect before the park<br>visit)                                                                                                                          |
| Wallner<br>2018<br>[103]     | Austria   | Park,<br>forest                                        | Lunch breaks in busy,<br>small urban park with<br>few trees vs larger park<br>with tree clumps, larger<br>broadleaved forest with<br>meadows | Type<br>&<br>Char | Adolescent<br>s, pupils                                                      | General               | Subjective<br>wellbeing | The decline in wellbeing (readiness for action,<br>readiness for exertion, state of mood, tension /<br>relaxation) after return in the classroom was<br>larger after visiting the two parks than after<br>visiting the forest. No difference was found<br>between the two parks.          |
| McAllister<br>2017*<br>[104] | Australia | Park,<br>forest                                        | video of wild forest vs<br>urban park vs urban<br>environment                                                                                | Туре              | Local<br>residents,<br>members<br>online<br>panel,<br>sports club<br>members | General               | Affect                  | Positive affect was the same for the video of<br>the urban park and the urban environment, but<br>higher for the wild forest. Negative affect for<br>the urban park video was the same as for the<br>wild forest, and both scored lower on negative<br>affect than the urban environment. |
| Zhang<br>2019<br>[105]       | China     | Park,<br>other<br>green<br>space<br>character<br>istic | Two parks: greenness,<br>sound level, sky visibility                                                                                         | Type<br>&<br>Char | Students                                                                     | General               | Affect                  | No effect of greenness or sky visibility in either<br>park on affect. LAeq, loudness, and roughness<br>were negatively correlated with affect in one<br>park, no effects in the other park. Acoustic and<br>visual comfort positively affected cheerfulness,<br>relaxation, and energy    |
| Benfield<br>2018*<br>[106]   | USA       | Park,<br>other<br>green<br>space<br>character<br>istic | Light pollution in three different parks                                                                                                     | Type<br>&<br>Char | Students                                                                     | General               | Affect                  | Arcadia park scored lower than the other two<br>parks. Lower light pollution was associated with<br>better scores on overall mood and arousal                                                                                                                                             |

\* Indirect green space manipulation (i.e., using a representation of nature rather than real exposure, such as a video, image or Virtual Reality)

| Article                    | Country | Green<br>space<br>category<br>/ quality | Green space description                                    | Type<br>Char | Participants               | General<br>/ Clinical | Health<br>outcome                                                      | Results                                                                                                                                                                                                                                                                                                  |
|----------------------------|---------|-----------------------------------------|------------------------------------------------------------|--------------|----------------------------|-----------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Song 2013<br>[107]         | Japan   | Park                                    | Urban park versus city<br>area                             | Туре         | Students,<br>males         | General               | Affect,<br>physiological<br>stress                                     | Better scores after the park walk (than city<br>walk) for comfortable, natural, and relaxed,<br>anxiety, total mood disturbance, tension-<br>anxiety, vigour. HR, In(HF). No effect on was<br>found on fatigue, anger-hostility, confusion,<br>depression, or HF/LF ratio.                               |
| Song 2014<br>[108]         | Japan   | Park                                    | Urban park versus city<br>area                             | Туре         | Students,<br>males         | General               | Affect,<br>physiological<br>stress                                     | Better scores after the park walk (than city<br>walk) for comfortable, natural, relaxed, anxiety,<br>tension-anxiety, fatigue, vigour, HR, In(HF),<br>LF/HF ratio. No effect on depression, anger-<br>hostility and confusion.                                                                           |
| Song 2015<br>[109]         | Japan   | Park                                    | Urban park versus city<br>area                             | Туре         | Students                   | General               | Affect,<br>physiological<br>stress                                     | Better scores after the park walk (than city<br>walk) for comfortable, natural, relaxed, anxiety,<br>tension-anxiety, fatigue, confusion, anger-<br>hostility, vigour, HR, In(HF), LF/HF ratio. No<br>effect on depression.                                                                              |
| Song 2019<br>[110]         | Japan   | Park                                    | Urban park versus city<br>area                             | Туре         | Visitors<br>green<br>space | General               | Affect,<br>physiological<br>stress                                     | Better scores after the park walk (than city<br>walk) for comfortable, natural, relaxed, anxiety,<br>tension-anxiety, fatigue, confusion, anger-<br>hostility, vigour,                                                                                                                                   |
| Tyrvaïnen<br>2014<br>[111] | Finland | Park,<br>forest                         | Urban park and urban<br>woodland, versus built-<br>up area | Туре         | Employees                  | General               | Affect, vitality,<br>physiological<br>stress,<br>restorative<br>effect | Higher positive affect, vitality, restorative<br>outcomes, and lower negative affect in urban<br>park and woodland than in built-up area. No<br>difference urban park and forest on positive<br>affect. Fewer negative emotions in forest as<br>compared to park. No effects found on cortisol<br>levels |



| Article                | Country | Green<br>space<br>category<br>/ quality | Green space description                                    | Type<br>Char | Participants            | Genera<br>l /<br>Clinical | Health<br>outcome                                              | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------|---------|-----------------------------------------|------------------------------------------------------------|--------------|-------------------------|---------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ojala 2019<br>[112]    | Finland | Park,<br>forest                         | Urban park and urban<br>woodland, versus built-<br>up area | Туре         | Employees               | Genera<br>I               | Vitality,<br>physiological<br>stress,<br>restorative<br>effect | Both forest and park scored higher on restorative outcomes and vitality than the city. No effect found on blood pressure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Lanki 2017<br>[113]    | Finland | Park,<br>forest                         | Urban forest vs urban<br>park vs built-up city<br>centre   | Туре         | Employees               | Genera<br>I               | Physiological<br>stress                                        | Heart rate was lower in forest and park versus<br>city, in basic model and controlled for either air<br>pollution or noise. SDNN was higher in the<br>forest, but not in the park compared to the city,<br>higher HF in forest and park versus the city. In<br>the viewing only period: lower systolic blood<br>pressure for forest, not park (and not for forest<br>when controlling for air pollution). Lower heart<br>rate for forest and park (not for park when<br>controlling for air pollution) versus city. SDNN<br>lower for forest (only main model). RMSSD<br>lower for park and forest (not when controlling<br>for air pollution). HF higher for park and forest<br>compared to the city. No effects found on<br>RMSSD or blood pressure. |
| Ewert<br>2018<br>[114] | USA     | Park,<br>forest                         | wilderness type forest,<br>park, and built<br>environment  | Туре         | Green space<br>visitors | Genera<br>I               | Perceived<br>stress,<br>physiological<br>stress                | Demands and worries decreased after visiting<br>all three sites. Joy increased after the park and<br>forest visit (not after urban visit), with higher<br>joy after visiting the forest than the park or<br>urban area. Cortisol levels decreased after<br>visiting the forest, but not the park or urban<br>area. A-amylase increased after visiting the<br>urban area, no effect found for the park or<br>forest. No effect found of environment on<br>demand, worries, tension.                                                                                                                                                                                                                                                                     |

| Article                    | Country | Green<br>space<br>category<br>/ quality | Green space description                                                  | Type<br>Char | Participants                     | General<br>/ Clinical | Health<br>outcome                                     | Results                                                                                                                                                                                                                                                                                                                                              |
|----------------------------|---------|-----------------------------------------|--------------------------------------------------------------------------|--------------|----------------------------------|-----------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Detweiler<br>2009<br>[115] | USA     | Garden                                  | Wander garden in a closed dementia facility                              | Туре         | elderly,<br>dementia<br>patients | Clinical              | Severity<br>mental<br>disorder                        | Secondary anti-depressants dosages and<br>antipsychotic drug prescriptions decreased<br>after implementing the wander garden. Both<br>medications were only prescribed to low users<br>of the garden. Primary dosage levels anti-<br>depressants increased after implementation.<br>No effects on anxiolytics or hypnotic drugs.                     |
| Detweiler<br>2008<br>[116] | USA     | Garden                                  | Wander garden in a closed dementia facility                              | Туре         | elderly,<br>dementia<br>patients | Clinical              | Problem<br>behaviour                                  | Lower scores on agitation after implementing<br>the garden and with longer stays in the garden.<br>Most patients required less medication.<br>Increase in level 4 incidents (causing physical<br>harm) after implementation of the garden.                                                                                                           |
| Cordoza<br>2018<br>[117]   | USA     | Garden                                  | Hospital garden                                                          | Туое         | Employees,<br>nurses             | General               | Affect,<br>severity<br>mental<br>disorder             | Positive effect of taking breaks in the garden on<br>emotional exhaustion and depersonalization,<br>not on personal accomplishment. Positive<br>effects on anger, tiredness, and total score but<br>only when taking scores above 10 % from zero.                                                                                                    |
| Zhang<br>2018<br>[118]     | China   | Garden                                  | Unstructured versus<br>Japanese garden                                   | Char         | Students                         | General               | Physiological<br>stress                               | HR increased and GSR mean and SD higher and<br>BVA lower in unstructured than in the Japanese<br>garden. No effect on HRV.                                                                                                                                                                                                                           |
| Lee 2017*<br>[119]         | Korea   | Garden                                  | Pictures of a garden<br>versus urban (distant,<br>medium, near distance) | Туре         | Adolescent<br>s                  | General               | Affect,<br>physiological<br>stress, brain<br>activity | Pictures of the garden scored lower on anxiety<br>and in the negative mood states than the urban<br>pictures, and higher on the semantic<br>differential scale. No effect on blood pressure<br>or pulse rate, nor on vigour. Activity in the left<br>and right prefrontal cortices decreased for the<br>garden pictures, and increased for the city. |



| Article                  | Country | Green<br>space<br>category<br>/ quality | Green space description                                                                 | Type<br>Char        | Participants                     | General<br>/ Clinical | Health<br>outcome                                                                            | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------|---------|-----------------------------------------|-----------------------------------------------------------------------------------------|---------------------|----------------------------------|-----------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Korn 2018<br>[120]       | Peru    | Garden                                  | Constructing a garden vs<br>not                                                         | Туре                | Local<br>residents               | General               | Perceived<br>stress,<br>physiological<br>stress, quality<br>of life,<br>problem<br>behaviour | Having constructed a garden resulted in lower<br>stress scores, more parent empathy after 6 and<br>12 months, and higher quality of life after 12<br>months. No effect on partner empathy or blood<br>pressure.                                                                                                                                                                                                                                                     |
| Goto 2018<br>[121]       | Japan   | Garden                                  | Japanese garden on<br>rooftop / terrace of<br>healthcare facility                       | Туре                | Elderly,<br>dementia<br>patients | Clinical              | Physiological<br>stress,<br>problem<br>behaviour                                             | After installing the Japanese garden, pulse rates<br>and heart rate were significantly lower and<br>more positive comments about behaviour were<br>made. (note: in separate analysis, only the<br>terrace had a significant effect)                                                                                                                                                                                                                                 |
| Elsadek<br>2019<br>[122] | Canada  | Garden                                  | Landscape (botanical)<br>garden vs Japanese<br>garden vs architectural<br>(rose) garden | Type<br>and<br>char | Students                         | General               | Affect,<br>physiological<br>stress                                                           | Feeling of garden atmoshpere (relaxing,<br>comfortable): Japanese better than landscape,<br>and Japanese and landscape better than<br>architectural. Feeling of garden design<br>(cheerful, colorful): Japanese better than<br>architectural and Japanese and architectural<br>better than landscape. No difference of garden<br>styles on HRV.                                                                                                                     |
| Lee 2009<br>[123]        | Japan   | Forest                                  | forest versus urban<br>environment                                                      | Туре                | Students                         | General               | Affect,<br>physiological<br>stress                                                           | Refreshment and comfortability better after<br>viewing forest than after viewing urban, also in<br>the evening. Soothing scores better after<br>viewing forest than after urban. Lower diastolic<br>pressure, pulse rate after viewing forest than<br>after viewing urban environment. Cortisol level<br>lower before and after viewing forest than<br>urban. No effect on systolic blood pressure and<br>no effect of environment on physiology in the<br>evening. |

| Article                   | Country | Green<br>space<br>category<br>/ quality | Green space description                                                                                                                                                                         | Type<br>Char      | Participants | General<br>/ Clinical | Health<br>outcome                          | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------|---------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|-----------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Joung 2015<br>[124]       | Korea   | Forest                                  | Forest vs urban, viewed<br>from roof top                                                                                                                                                        | Туре              | Students     | General               | Affect, brain<br>activity                  | Comfortable, natural and soothed were<br>significantly higher in forest than in urban.<br>Anger & hostility, fatigue, and total mood<br>disturbances were lower and vigour was higher<br>in forest than in urban. No differences between<br>tension & anxiety, depression, and confusion.<br>Change in Hb and oxy-Hb was lower in forest<br>than in urban condition, indicating greater<br>stability in the prefrontal cortices.                                                                                                                                                                                  |
| Takayama<br>2014<br>[125] | Japan   | Forest                                  | Four different forests<br>(two artificial with<br>Japanese cedar, other<br>two deciduous bread-<br>leaved such as oak)<br>urban areas (downtown<br>major traffic areas),<br>viewing and walking | Type<br>&<br>Char | Students     | General               | Affect, vitality,<br>restorative<br>effect | Significant interaction of environment and<br>activity for tension and anxiety, vigour, fatigue,<br>confusion, vitality, and restorative outcomes.<br>Greater benefits forest (vs urban) when walking<br>(vs viewing) on vitality and restorative<br>outcomes. Combined effect of viewing and<br>walking: tension and anxiety, fatigue,<br>confusion, vigour, vitality, positive affect,<br>negative effect, restorative outcomes were<br>better after the forest than the urban<br>environment. No interaction effect was found<br>for the PANAS. No combined effect on POMS<br>anger and hostility, depression. |
| Morita<br>2007<br>[126]   | Japan   | Forest                                  | Forest bathing compared to a control day                                                                                                                                                        | Туре              | Volunteers   | General               | Affect                                     | Interaction of environment and time: forest<br>scores significantly improved over time<br>compared to the control day on hostility,<br>depression, liveliness, and anxiety, but also<br>boredom increased. More beneficial effects<br>were found for higher stressed individuals.                                                                                                                                                                                                                                                                                                                                 |



| Article                     | Country         | Green<br>space<br>category<br>/ quality | Green space description                                                  | Type<br>Char      | Participants                       | General<br>/ Clinical | Health<br>outcome                  | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------|-----------------|-----------------------------------------|--------------------------------------------------------------------------|-------------------|------------------------------------|-----------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moyle<br>2018*<br>[127]     | Australia       | Forest                                  | Virtual reality of forest                                                | Туре              | Elderly,<br>dementia<br>patients   | Clinical              | Affect                             | The scores were compared to norm scores.<br>Patients expressed more pleasure and alertness<br>during the forest VR, but some also showed<br>more anxiety. No effect was found on anger or<br>sadness.                                                                                                                                                                                                                                                                                                                                                                       |
| Lee 2011<br>[128]           | Japan           | Forest                                  | forest (broad-leaved<br>deciduous trees) versus<br>urban commercial area | Type              | Students                           | General               | Affect,<br>physiological<br>stress | Better scores for comfortable, soothed,<br>refreshed, tension-anxiety, vigour, fatigue, and<br>confusion, and total mood disturbance in forest<br>compared to urban. Before and after<br>comparison showed better scores for<br>comfortable, soothed, refreshed, vigour,<br>tension, fatigue and confusion after forest<br>compared to before (tension-anxiety and<br>anger-hostility increased after urban walk).<br>Better HRV and LF/HF ratio for forest in the<br>beginning of the viewing period. No effect of<br>environment on cortisol levels or blood<br>pressure. |
| Tsunetsugu<br>2013<br>[129] | Japan           | Forest                                  | Conifer and deciduous<br>trees forest vs urban                           | Туре              | Students                           | General               | Affect,<br>physiological<br>stress | The forest was more comfortable, soothing,<br>natural and more refreshing than the urban<br>environment. Over time, only negative effects<br>of urban were found on mood outcomes.<br>Diastolic blood pressure was lower and HRV<br>higher, LF/HF ratio was lower, and pulse rate<br>was lower in forest than in urban. No effect on<br>systolic blood pressure.                                                                                                                                                                                                            |
| Martens<br>2011<br>[130]    | Switzerlan<br>d | Forest                                  | Wild versus tended<br>forest                                             | Type<br>&<br>Char | Students,<br>employees,<br>elderly | General               | Affect                             | A stronger increase in positive affect and a stronger decrease in negative affect was found for the tended versus the wild forest, there was no difference between arousal and activation.                                                                                                                                                                                                                                                                                                                                                                                  |

| Article                    | Country | Green<br>space<br>category<br>/ quality | Green space description                                          | Type<br>Char      | Participants                               | General<br>/ Clinical | Health<br>outcome                  | Results                                                                                                                                                                                                                                                                                                                                              |
|----------------------------|---------|-----------------------------------------|------------------------------------------------------------------|-------------------|--------------------------------------------|-----------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Takayama<br>2017<br>[131]  | Japan   | Forest                                  | Thinned versus<br>unthinned forest                               | Type<br>&<br>Char | Students,<br>employees                     | General               | Affect,<br>restorative<br>effect   | In both thinned and unthinned forest, a<br>reduction was found in tension-anxiety,<br>depression, confusion. In the unthinned<br>condition, fatigue also reduced. In the thinned<br>condition, anger-hostility reduced. Restorative<br>outcomes were better in the unthinned forest.<br>No difference was found for positive and<br>negative affect. |
| Tsutsumi<br>2017*<br>[132] | Japan   | Forest                                  | Video of forest<br>(preferred or not) vs sea,<br>with sounds     | Туре              | Students                                   | General               | Affect,<br>physiological<br>stress | Those that preferred a sea video reported a decrease in vigour and confusion after viewing the forest video. No effect on blood pressure, Behavioural Inhibition System higher for sea than for forest.                                                                                                                                              |
| Yu 2018*<br>[133]          | Taiwan  | Forest                                  | Virtual reality of forest<br>vs shopping street                  | Туре              | Volunteers                                 | General               | Affect,<br>physiological<br>stress | The forest environment significantly decreased<br>the negative mood components (confusion,<br>fatigue, anger-hostility, tension, and<br>depression), and increased vigour. No effect of<br>environment on heart rate, a-amylase, or blood<br>pressure                                                                                                |
| Song 2015<br>[134]         | Japan   | Forest                                  | Forest with many<br>Japanese cypress trees,<br>versus urban area | Туре              | Patients<br>with a<br>physical<br>disorder | Clinical,<br>at-risk  | Affect,<br>physiological<br>stress | Comfortable, natural, and relaxed scored better<br>in park than in city. Better scores after park -<br>than city- walk for tension-anxiety, fatigue,<br>anger-hostility, confusion, vigour, and<br>depression. HR lower and ln(HF) higher during<br>park than city walk, no effect on LF/HF ratio.                                                   |
| Song 2018<br>[135]         | Japan   | Forest                                  | 52 different Japanese<br>forests vs city areas                   | Туре              | Students                                   | General               | Affect                             | Scores for tension-anxiety, fatigue, anger-<br>hostility, confusion, vigour, and depression<br>were better after the forest walk than after the<br>city walk. Participants with higher anxiety levels<br>showed greater decreases in depression.                                                                                                     |

| Article                             | Country | Green<br>space<br>category<br>/ quality    | Green space description                                         | Type<br>Char | Participants                   | General<br>/ Clinical | Health<br>outcom<br>e                  | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------|---------|--------------------------------------------|-----------------------------------------------------------------|--------------|--------------------------------|-----------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stigsdotter<br>2017<br>[136]        | Denmark | Forest                                     | Health forest versus<br>urban downtown area                     | Туре         | Students                       | General               | Affect,<br>physiol<br>ogical<br>stress | After the forest walk a decrease in fatigue and total<br>mood disturbances were found compared to before<br>the walk. Before walking in the environment (but<br>while already being there), tension-aggression,<br>depression-dejection, ager-hostility, and confusion-<br>bewilderments scored better in the forest than in the<br>urban environment. No difference in blood pressure<br>and HRV was found after the walk in the forest as<br>compared to the city area.                                                                                                                                  |
| Sonntag-<br>Ostrom<br>2014<br>[137] | Sweden  | Forest,<br>other<br>green<br>space<br>type | Forest by the lake, rock<br>outcrop, spruce forest<br>(vs city) | Туре         | Patients<br>mental<br>disorder | Clinical              | Affect,<br>physiol<br>ogical<br>stress | Higher scores were found on all natural environment<br>(vs city) for: relaxed, happy, harmonious, peaceful,<br>clearheaded). Participants reported feeling more<br>relaxed, harmonious, and peaceful in the forest by the<br>lake than in the rock outcrop. No effect found on<br>energy. Heart rate was significantly lower in all natural<br>environments (vs city). Heart rate was lower in the<br>forest by the lake than in the rock outcrop and spruce<br>forest. Blood pressure lower in forest by the lake and<br>spruce forest (vs city). No difference blood pressure or<br>heart rate recovery. |
| Jo 2019*<br>[138]                   | Japan   | Forest                                     | Forest sounds vs urban<br>sounds                                | Туре         | Students                       | General               | Affect,<br>physiol<br>ogical<br>stress | Forest sounds scored higher on comfortability,<br>relaxation, and naturalness. Forest sounds scored<br>lower on tension - anxiety, depression, anger-hostility,<br>fatigue, confusion, and total mood disturbance, and<br>higher on vigour than urban sounds. Mean Oxy-Hb<br>concentrations in left and right prefrontal cortex was<br>lower for forest sounds than for urban sounds. HRV<br>was better and HR lower during forest sounds vs<br>urban sounds.                                                                                                                                              |

| Article                     | Country | Green<br>space<br>category<br>/ quality    | Green space description                                                                              | Type<br>Char        | Participants    | General<br>/ Clinical | Health<br>outcome                                          | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------|---------|--------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------|-----------------|-----------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chiang<br>2017*<br>[139]    | Taiwan  | Forest,<br>Trees<br>and<br>other<br>plants | Location in the forest:<br>interior vs edge vs<br>exterior. High vs low<br>density vegetation        | Type<br>and<br>char | Students        | General               | Affect, brain<br>activity                                  | Interior images resulted in a more positive<br>mood, less negative mood, and less mood<br>disturbances than edge and exterior. Higher<br>EEG-Alpha activity was found for the interior<br>images than for the edge images (signalling<br>more relaxation in the edge group). High and<br>medium density vegetation resulted in a<br>significantly better positive mood than low-<br>density vegetation. No effect of vegetation<br>level on negative mood and total mood<br>disturbance, nor on EEG-alpha activity. |
| Toda 2013<br>[140]          | Japan   | Forest                                     | walking up a mountain<br>path through the forest<br>versus sitting at the<br>office                  | Туре                | Elderly         | General               | Affect,<br>perceived<br>stress,<br>physiological<br>stress | Feeling uplifted was higher directly after, 20<br>min, and 40 min after the walk than before the<br>walk. Feeling tired was lower directly after the<br>walk and feeling stressed was significantly<br>lower 40 min after the walk than before the<br>walk. CgA was significantly higher after the<br>walk than before the walk and significantly<br>lower 40 min after the walk than before the<br>walk. Blood pressure was lower after the walk<br>than before the walk. No effect on cortisol<br>levels.         |
| Greenwoo<br>d 2016<br>[141] | UK      | grass                                      | on a grass plane outside<br>the building (vs inside)<br>with or without a friend,<br>or with a phone | Туре                | Adolescent<br>s | General               | Physiological<br>stress                                    | Heart rate decreased after being on the grass<br>(but: also decreased indoors), blood pressure<br>decreased in all conditions (irrespective of<br>environment). positive affect increased on the<br>grass (compared to indoors).                                                                                                                                                                                                                                                                                    |



| Article                               | Country                     | Green<br>space<br>category<br>/ quality | Green space description                                                                             | Type<br>Char      | Participants                     | General<br>/ Clinical | Health<br>outcome                                                           | Results                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------|-----------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------|----------------------------------|-----------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rogerson<br>2016<br>[142]             | UK                          | Grass                                   | Grassland vs heritage<br>park, beach, riverside                                                     | Туре              | Runners                          | General               | Affect,<br>perceived<br>stress, self-<br>esteem                             | Decrease in stress, tension, depression, anger,<br>confusion and an increase in vigour, self-<br>esteem, and fatigue after the run. No<br>difference between the environments was<br>found.                                                                                                                                                                                           |
| Arnberger<br>2018<br>[143]            | Austria,<br>Switzerlan<br>d | Grass                                   | Managed versus tended<br>meadow, versus urban,<br>versus river (urban,<br>mountain)                 | Type<br>&<br>Char | Students,<br>employees           | General               | Perceived<br>stress,<br>subjective<br>wellbeing,<br>physiological<br>stress | No difference was found between managed<br>and tended meadows on perceived stress,<br>subjective wellbeing or any of the physiological<br>outcomes.                                                                                                                                                                                                                                   |
| Ho 2016<br>[144]                      | Taiwan                      | Plants<br>and trees                     | Short-term (spinach and<br>lettuce) versus long-term<br>life (tomato, string<br>beans) cycle plants | Char              | Patients<br>physical<br>disorder | Clinical              | Quality of Life                                                             | Participants tending short-term plants<br>demonstrated more improvements in social<br>role than those tending long-term plants, an<br>effect that was more pronounced for females.<br>More improvement in family role was found for<br>participants tending long-term plants, which<br>was more pronounced for males, and patients<br>in stage 2.                                     |
| Paraskevop<br>oulou<br>2018*<br>[145] | Greece                      | Plants<br>and trees                     | Still images of shrubs or<br>a tree displaying<br>seasonal changes vs no<br>seasonal changes        | Char              | Patients<br>mental<br>disorder   | Clinical              | Affect                                                                      | Facial expression tracking displayed that<br>positive time percent was greater for image<br>depicting a tree in autumn colour compared to<br>a tree with green foliage, flowered shrub, and a<br>green shrub. Joy time percent was greater for<br>green shrub planting than for a tree in green or<br>autumn foliage and flowered shrub. No effects<br>on anger, and negative effect. |

| Article                    | Country | Green<br>space<br>category<br>/ quality | Green space description                                                                                                                       | Type<br>Char      | Participants                        | General<br>/ Clinical | Health<br>outcome                                            | Results                                                                                                                                                                                                                                                                                  |
|----------------------------|---------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------|-----------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Elsadek<br>2019<br>[146]   | China   | Plants<br>and trees                     | Three different roadside<br>trees: Sakura trees, the<br>London plane,<br>Metasequoia versus a<br>control road<br>(surrounded by<br>buildings) | Char              | Students,<br>university<br>visitors | General               | Affect, vitality,<br>restorative<br>effect                   | Compared to the control road, participants<br>reported lower values on tension - anxiety,<br>depression, anger-hostility, fatigue, confusion,<br>anxiety and total mood disturbance, and higher<br>scores for vigour, vitality, and restorative effect<br>on all three roads with trees. |
| Gathright<br>2006<br>[147] | Japan   | Plants<br>and trees                     | Climbing in a real tree<br>versus artificial structure                                                                                        | Туре              | Climbers                            | General               | Affect,<br>restorative<br>effect,<br>physiological<br>stress | Tension, fatigue, and confusion were lower<br>while climbing the tree versus the tower, while<br>vitality and restorative effect was higher. HRV<br>was also higher while climbing the tree<br>compared to the tower.                                                                    |
| Marselle<br>2016<br>[148]  | UK      | Biodivers<br>ity                        | Perceived bird, butterfly,<br>and plant/tree<br>biodiversity                                                                                  | Char              | Walkers,<br>elderly                 | General               | Affect                                                       | None of the biodiversity outcomes influenced post-walk affect directly                                                                                                                                                                                                                   |
| Chang<br>2016<br>[149]     | Taiwan  | Biodivers<br>ity                        | Biodiversity in green<br>urban space, farmland,<br>mountain                                                                                   | Type<br>&<br>Char | Volunteers                          | General               | Physiological<br>stress                                      | Setting with more evenness in biodiversity resulted in lower heart rate. No other effects were found.                                                                                                                                                                                    |
| Kondo<br>2015<br>[150]     | USA     | Other<br>green<br>space<br>type         | green stormwater<br>infrastructure                                                                                                            | Туре              | Local<br>residents                  | General               | Perceived<br>stress,<br>physiological<br>stress              | No effect of green stormwater infrastructure on high blood pressure or high stress.                                                                                                                                                                                                      |



| Article                                | Country  | Green<br>space<br>category<br>/ quality       | Green space description                                                                                                                                        | Type<br>Char | Participants                 | General<br>/ Clinical | Health<br>outcome                  | Results                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------|----------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------|-----------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Martensso<br>n 2009<br>[151]           | Sweden   | Other<br>green<br>space<br>character<br>istic | OPEC: proportion<br>containing shrubs, trees,<br>hills; degree of<br>integration be-tween<br>vegetation, open area,<br>and play structures, sky<br>view factor | Char         | Schoolchild<br>ren           | General               | Severity<br>mental<br>disorder     | Higher OPEC scores related to better outcomes<br>on inattention, no effect on hyperactivity /<br>impulsivity (effect turned significant after<br>deleted outdoor schools - 3/11). No effect of<br>sky view factor on inattention or hyperactivity.                                                                         |
| Olszewska-<br>Guizzo<br>2018*<br>[152] | Portugal | Other<br>green<br>space<br>character<br>istic | contemplative (e.g., long<br>vistas, lush seemingly-<br>wild vegetation,<br>presence of symbolic<br>elements, smooth<br>landforms)                             | Char         | Students<br>and<br>employees | General               | Brain activity                     | Greater temporal beta asymmetry when<br>viewing contemplative versus non-<br>contemplative and versus baseline. No effect<br>on prefrontal alpha asymmetry, associated with<br>positive affect.                                                                                                                            |
| Gaterslebe<br>n 2013*<br>[153]         | UK       | Other<br>green<br>space<br>character<br>istic | Real walk vs video of the<br>walk, high prospect, low<br>refuge walk vs low<br>prospect, high refuge<br>walk                                                   | Char         | Students                     | General               | Affect,<br>physiological<br>stress | Anger/aggression, fear, and sadness decreased<br>whereas attentiveness and positive affect<br>increased for high prospect, low refuge,<br>increased for low prospect, high refuse, with a<br>greater reduction in the field. Effect on positive<br>affect and sadness was stronger in the<br>laboratory than in the field. |

| Article                  | Country                        | Green space<br>category/<br>quality        | Green space<br>description                                                                    | Type<br>Char       | Participants               | General<br>/ Clinical | Health<br>outcome                                      | Results                                                                                                                                                                                                                                                                         |
|--------------------------|--------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------|----------------------------|-----------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Van Dillen<br>2012 [154] | The<br>Netherlands             | Urban green<br>space                       | Quantity and<br>quality of street<br>greenery and green<br>areas                              | Type<br>&<br>Char. | Urban<br>residents         | General               | Mental health                                          | Better mental health with more and better-<br>quality street greenery. No relation between<br>the quality of green areas and mental health.                                                                                                                                     |
| Coldwell<br>2018 [155]   | United<br>Kingdom              | Urban green<br>space,<br>countryside       | Visits to urban<br>green space and<br>countryside                                             | Туре               | Urban<br>residents         | General               | Subjective<br>wellbeing,<br>Quality of life,<br>Affect | Mental wellbeing and quality of life increased<br>with more visits per year to the countryside<br>and urban green space. Yearly urban green<br>space visits were also positively related to<br>momentary anxiety. Little to no relations for<br>visits over the past two weeks. |
| Wyles<br>2019 [156]      | United<br>Kingdom              | Urban green<br>space, rural<br>green space | Recent visits to<br>urban & rural green<br>space, protected vs<br>non-protected<br>areas      | Туре               | National<br>residents      | General               | Recalled<br>psychological<br>restoration               | No difference in recalled restoration between<br>rural and urban green areas, better recalled<br>restoration for protected versus non-protected<br>areas.                                                                                                                       |
| Ma 2018<br>[157]         | China                          | Urban green<br>space, park                 | Frequency visits to<br>city park, country<br>park, community /<br>square green<br>spaces      | Туре               | Green<br>space<br>visitors | General               | Subjective<br>wellbeing                                | Higher frequency of visits to city parks and<br>community / square green spaces was related<br>with better mental well-being. Distance to the<br>park had a U-shaped relation to wellbeing.                                                                                     |
| Hadavi<br>2017 [158]     | United<br>States of<br>America | Urban green<br>space                       | Distance to open<br>lawn with trees and<br>green / social<br>spaces                           | Туре               | Local<br>residents         | General               | Subjective<br>wellbeing                                | Better mental wellbeing when living in closer<br>proximity of open lawn with trees and green /<br>social spaces. Worse wellbeing when living<br>close to building-dominated space.                                                                                              |
| Krekel<br>2016 [159]     | Germany                        | Urban green<br>space, forest               | Distance and<br>coverage of urban<br>green space and<br>forest (abandoned<br>areas and water) | Туре               | National<br>residents      | General               | Satisfaction<br>with life                              | Higher satisfaction with live when living closer<br>to urban green space and with more green<br>space in the residential area. No relations for<br>forest (or water). Negative relation for<br>abandoned areas.                                                                 |

### Table 6. Overview of the included studies; cross-sectional

| Article                | Country                        | Green space<br>category/<br>quality                        | Green space description                                                                                        | Type<br>Char  | Participants               | General<br>/ Clinical | Health<br>outcome                                                                     | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|--------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|----------------------------|-----------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kim 2016<br>[160]      | United<br>States of<br>America | Urban green<br>space, forest                               | Urban natural<br>environments,<br>trees / forests:<br>patches and<br>characteristics of<br>the patches         | Type,<br>Char | School<br>children         | General               | Quality of<br>life                                                                    | Higher quality of life when more trees / forests<br>patches, larger sizes, and more distance between<br>forest patches. No relation for mean patch size<br>and mean shape.                                                                                                                                                                                                                                                                                                                                                           |
| Marselle<br>2013 [161] | United<br>Kingdom              | Urban green<br>space, green<br>corridor,<br>farmland       | Walking through<br>urban green space,<br>green corridor,<br>natural and semi-<br>natural farmland<br>(coastal) | Туре          | Walkers                    | General               | Subjective<br>wellbeing,<br>affect,<br>severity<br>depression,<br>perceived<br>stress | Walking in urban green space / natural and semi-<br>natural did not affect subjective wellbeing,<br>affect, depression, or perceived stress. Walking<br>in green corridor / farmland improved wellbeing,<br>lowered negative affect and perceived stress and<br>had no relation for depression. No relation for<br>coast was found.                                                                                                                                                                                                  |
| Korpela<br>2010 [162]  | Finland                        | Urban green<br>space                                       | Managed natural<br>areas as favourite<br>places                                                                | Туре          | Local<br>residents         | General               | Restorative<br>effect                                                                 | Restorative outcomes were better for managed<br>natural areas (and waterside and activity / hobby<br>areas) than for indoor and outdoor urban areas<br>and built green spaces.                                                                                                                                                                                                                                                                                                                                                       |
| White<br>2013<br>[163] | United<br>Kingdom              | Urban green<br>space, forest,<br>other green<br>space type | Recent visits to<br>urban green space,<br>countryside,<br>farmland, forest,<br>hill / moor /<br>mountain       | Туре          | Green<br>space<br>visitors | General               | Restorative<br>effect                                                                 | Recalled restoration was similar for different<br>types of urban green space (town park, open<br>space, allotment, playground), and a lower score<br>for playing field compared to countryside visits.<br>Scores were better for rural nature compared to<br>countryside visits: farmland, woodland/forest,<br>hill/moor/mountain; and aquatic space: beach<br>and coast, not for river / lake / canal. In the<br>general categories urban green space yielded<br>lower restoration outcomes than urban green<br>space and the coast |

| Article                        | Country   | Green space<br>category/<br>quality                   | Green space description                                                                                                   | Type<br>/<br>Char | Participants                  | General<br>/ Clinical | Health<br>outcome                                                                        | Results                                                                                                                                                                                                                                                                         |
|--------------------------------|-----------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------|-----------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Saw 2015<br>[164]              | Singapore | Park, other<br>green space<br>type                    | Regional parks,<br>neighborhood<br>parks, park<br>connector, nature<br>reserve                                            | Туре              | Students                      | General               | Affect,<br>perceived<br>stress,<br>subjective<br>wellbeing,<br>satisfaction<br>with life | None of the green space variables affected<br>affect, perceived stress, subjective wellbeing, or<br>satisfaction with life.                                                                                                                                                     |
| Dadvand<br>2019 [36]           | Iran      | Park, forest,<br>garden, other<br>green space<br>type | Urban parks,<br>nature reserves,<br>forests and other<br>natural green<br>spaces, and<br>garden and<br>agricultural field | Type              | Adolescent<br>s               | General               | Self-image,<br>social<br>contacts                                                        | Better self-satisfaction and social contacts with<br>increased time spent in urban parks and gardens,<br>more social contacts with increased time spent<br>in forest, lower self-satisfaction with increased<br>time spent in forest.                                           |
| Wood<br>2017 [165]             | Australia | Park                                                  | Park area,<br>number of parks,<br>type of parks, and<br>park functions                                                    | Туре              | Local<br>residents            | General               | Subjective<br>wellbeing                                                                  | Wellbeing increased for (all, small, district,<br>regional) parks but not for (local,<br>neighbourhood) parks. More pronounced<br>associations found for larger parks and total park<br>area.                                                                                   |
| Tillman<br>2018 [72]           | Canada    | Park, grass,<br>Trees and<br>other plants             | Park, grass /<br>shrubbery, dense<br>vegetation                                                                           | Туре              | Schoolchild<br>ren            | General               | Quality of<br>Life                                                                       | Quality of life positively related with percentage<br>of park space, no relation with percentage of<br>dense vegetation and urbanicity, and a negative<br>relation with percentage of grass and water.<br>These associations were only found for urban<br>and suburban regions. |
| Balsevicien<br>e 2014<br>[166] | Lithuania | Park                                                  | Distance to parks                                                                                                         | Туре              | Young<br>mothers,<br>children | General               | Children's<br>problematic<br>behaviour                                                   | Only associations for low-education mothers<br>were found, with less problematic behaviour of<br>the children with closer residential proximity to<br>the parks                                                                                                                 |

| Article                 | Country                        | Green space<br>category/<br>quality                   | Green space<br>description                                                                            | Type<br>Char      | Participants                       | General<br>/ Clinical | Health<br>outcome                               | Results                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------|--------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------|------------------------------------|-----------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zhang<br>2019 [167]     | China                          | Park                                                  | Park area, number<br>of parks, trees,<br>activities, amenities<br>in park                             | Type<br>&<br>Char | Elderly                            | General               | Quality of<br>Life                              | No association for (park area, number of<br>amenities and paths, aesthetics, visibility) on<br>quality of life, positive association for (number of<br>trees in the park) on social quality of life.<br>Negative association for number of parks and<br>activity types. Positive association for<br>entertainment density and negative effect of<br>signs of crime on psychological quality of life. |
| Bojorquez<br>2018 [168] | Mexico                         | Park                                                  | Distance to park,<br>vegetation cover,<br>park qualities                                              | Type<br>&<br>Char | National<br>residents              | General               | Mental<br>health                                | Positive association for park coverage on mental health, no effect of (vegetation cover, park qualities) on mental health.                                                                                                                                                                                                                                                                           |
| Larson<br>2016 [169]    | United<br>States of<br>America | Park                                                  | Park quantity and quality (amenities)                                                                 | Type<br>&<br>Char | National residents                 | General               | Subjective<br>wellbeing                         | Better wellbeing scores with more park coverage and better park quality.                                                                                                                                                                                                                                                                                                                             |
| Benita<br>2019 [170]    | Singapore                      | Park                                                  | Parks visited<br>(versus urban<br>areas)                                                              | Туре              | School<br>children,<br>adolescents | General               | Affect                                          | The odds of experiencing happy moments was greater in park environments than in commercial spaces.                                                                                                                                                                                                                                                                                                   |
| Sugiyama<br>2016 [171]  | Australia                      | Park                                                  | Park area, mean<br>attractiveness,<br>attractiveness of<br>the most attractive<br>park, size park     | Type<br>&<br>Char | National residents                 | General               | Mental<br>health                                | No association for the park variables on mental<br>health, only higher odds of being in the high<br>distress groups for residential exposure to more<br>attractive parks within the 800 and 1200 m<br>buffer.                                                                                                                                                                                        |
| Hansmann<br>2007 [172]  | Switzerland                    | Park, forest                                          | Visits to a park,<br>forest inside, and<br>forest edge                                                | Туре              | Green<br>space<br>visitors         | General               | Perceived<br>stress,<br>subjective<br>wellbeing | Lower stress and higher wellbeing scores after visiting all three sites, no differences were found between the sites.                                                                                                                                                                                                                                                                                |
| Mitchell<br>2013 [24]   | United<br>Kingdom              | Park, forest,<br>garden,<br>other green<br>space type | Open space / parks,<br>forest / woods,<br>outdoor / courts,<br>home /garden, and<br>beach / waterside | Туре              | National<br>residents              | General               | Mental<br>health,<br>Subjective<br>wellbeing    | Mental health: use of park and forest at least<br>once a week was related to higher odds of good<br>mental health. No association for sports pitch,<br>garden, or beach. Wellbeing: positive association                                                                                                                                                                                             |

for irregular use of parks, regular use of sports pitch. No association for forest, garden, beach.

| Article                            | Country                        | Green space<br>category/<br>quality                                  | Green space<br>description                                                                                                       | Type<br>/<br>Char | Participants               | General<br>/ Clinical | Health<br>outcome                        | Results                                                                                                                                                                                                                                                            |
|------------------------------------|--------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|-----------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scott 2018<br>[173]                | United<br>States of<br>America | Park, Trees<br>and other<br>plants                                   | Park access,<br>impervious surface<br>and tree canopy<br>coverage in home<br>and school<br>environment                           | Туре              | School<br>children         | At-risk               | Problem<br>behaviour                     | No association for park access on problem<br>behaviour, only one positive effect on<br>subcomponent initiative. For tree canopy, some<br>subcomponents scored better with more tree<br>canopy around the house and home, not all.                                  |
| Zhang<br>2019 [174]                | Singapore                      | Park, Trees<br>and other<br>plants                                   | Park area, tree<br>canopy cover,<br>vegetation cover<br>(circular, nested,<br>network (distance<br>to road))                     | Type<br>&<br>Char | National<br>residents      | General               | Mental<br>health                         | Positive relation between park area (network<br>buffer), canopy cover (circular, nested, network<br>buffer), vegetation cover (circular, nested,<br>network buffer) on mental health                                                                               |
| Ayala-<br>Azcárraga<br>2019 [175]  | Mexico                         | Park,<br>biodiversity,<br>other green<br>space<br>characteristi<br>c | Urban park; tree<br>abundance, height<br>of tree, greenness,<br>naturalness,<br>biodiversity, bird<br>song, noxious fauna        | Type<br>&<br>Char | Green<br>space<br>visitors | General               | Subjective<br>wellbeing                  | Canonical correlations with wellbeing were<br>positive for bird song, naturalness degree, park<br>area, walking trails, and safety. Negative<br>correlations were found with the height of trees<br>and distance to the park.                                      |
| Henderson<br>-Wilson<br>2017 [176] | Australia                      | Park                                                                 | Urban (fringe) park<br>use                                                                                                       | Туре              | Green<br>space<br>visitors | General               | Mental<br>health,<br>perceived<br>stress | Park users reported lower mental health but also<br>lower stress levels than the general population in<br>the UK.                                                                                                                                                  |
| Burton<br>2015 [177]               | United<br>Kingdom              | Garden                                                               | Personal/shared:<br>back, front garden,<br>yard, patio,<br>balcony, courtyard,<br>number of trees,<br>greenness outdoor<br>space | Type<br>&<br>Char | Elderly                    | General               | Subjective<br>wellbeing                  | No association for number on wellbeing of<br>number of trees in view, having a front/back<br>garden, balcony, courtyard. Positive association<br>for a greener view, having a personal patio.<br>Having a personal yard resulted in lower<br>subjective wellbeing. |

| Article                  | Country                        | Green space<br>category/<br>quality                | Green space<br>description                                                                                                                                                  | Type<br>Char      | Participants                          | General<br>/ Clinical | Health<br>outcome                                           | Results                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------|--------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------|-----------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kohlleppel<br>2002 [178] | United<br>States of<br>America | Garden                                             | Botanical garden                                                                                                                                                            | Туре              | Green<br>space<br>visitors            | General               | Perceived<br>stress                                         | Stress levels were lower after visiting the botanical garden (than before the visit)                                                                                                                                                                                                                                                                                                                |
| Tsai 2018<br>[179]       | United<br>States of<br>America | Forest, Trees<br>and other<br>plants               | Forest, shrubland,<br>herbaceous land (%<br>cover, patch area &<br>density, edge<br>density & contrast<br>index, Euclidean<br>distance patches,<br>patch cohesion<br>index) | Type<br>&<br>Char | National<br>residents                 | General               | Mental<br>health                                            | Adjusted model (not all predictors were<br>entered): No association for forest %, shrubland<br>patch area & edge contrast, herbaceous % &<br>patch density on odds of frequent mental<br>distress. Positive association for forest edge<br>contrast index and negative association for more<br>connected shrubland.                                                                                 |
| Van Aart<br>2018 [180]   | Belgium                        | Forest, other<br>green space<br>type               | Forest / semi-<br>natural areas and<br>agricultural area                                                                                                                    | Туре              | National<br>residents,<br>adolescents | General               | Affect,<br>problem<br>behaviour,<br>physiological<br>stress | Positive association for forest / semi-natural area<br>on affect, while no association were found for<br>problem behaviour or cortisol levels. No<br>association for agricultural land on affect and<br>cortisol levels. Lower hyperactivity levels with<br>more agricultural land. No effects industrial area<br>on affect or cortisol levels, higher hyperactivity<br>related with built-up area. |
| Wu 2017<br>[181]         | United<br>States of<br>America | Forest,<br>grassland,<br>Trees and<br>other plants | Average and near-<br>road tree canopy, %<br>forest, % grassland,<br>versus % urban land                                                                                     | Туре              | School<br>children                    | Clinical              | Prevalence<br>mental<br>disorder                            | Lower autism prevalence for school districts with<br>more: tree canopy, near-street tree canopy,<br>forest area, and higher prevalence with more<br>urban land but only in districts with high road<br>density. For all districts, there was a lower<br>autism prevalence with more grassland.                                                                                                      |
| Song 2019<br>[182]       | Korea                          | Forest                                             | Per district, forest:<br>area, volume, area<br>per capita, volume<br>per capita                                                                                             | Туре              | National<br>residents                 | General               | Severity<br>mental<br>disorder                              | Positive associations for forest area and volume<br>(both total and per capita) on the rate of<br>depressive symptoms. Lowest rates were found                                                                                                                                                                                                                                                      |

in the highest quartile (or third quartile for forest area)

| Article                   | Country           | Green space<br>category/<br>quality                                              | Green space description                                                                                                                           | Type<br>Char      | Participants          | General<br>/ Clinical | Health<br>outcome                 | Results                                                                                                                                                                                                                                                                |
|---------------------------|-------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|-----------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MacKerron<br>2013 [183]   | United<br>Kingdom | Forest,<br>grassland,<br>other green<br>space type                               | Forest, semi-<br>natural grassland,<br>mountain / moors /<br>heathland,<br>enclosed farml-and,<br>inland bare ground<br>(coast and<br>freshwater) | Туре              | National<br>residents | General               | Affect                            | Compared to urban areas, more positive affect<br>was reported in forest, grassland, mountain /<br>moors / heathland, and in enclosed farmland. No<br>association for inland bare ground. Positive<br>association for coast (most pronounced of all)<br>and freshwater. |
| Gilchrist<br>2015 [184]   | United<br>Kingdom | Forest,<br>grassland,<br>Trees and<br>other plants,<br>other green<br>space type | Office view: trees /<br>woodland, lawn /<br>mown grass,<br>bushes / flowering<br>plants, meadow /<br>rough grass, fields /<br>distant countryside | Туре              | Employees             | General               | Subjective<br>wellbeing           | Better wellbeing with more trees / woodland,<br>lawn / mown grass, bushes / flowering plants in<br>the view. No association for meadow / rough<br>grass, fields / distant countryside.                                                                                 |
| Alcock<br>2015 [185]      | United<br>Kingdom | Forest,<br>grassland,<br>other green<br>space type                               | Broadleaved &<br>coniferous wood-<br>land, arable, im-<br>proved & semi-<br>natural grassland,<br>mountain, heath &<br>bog, (salt/fresh<br>water) | Type<br>&<br>Char | National<br>residents | General               | Mental<br>health                  | No association for amount of green space<br>between individuals, within individuals (people<br>that moved) positive association for improved<br>grassland, and mountain, heath, bog (and<br>coastal, negative for saltwater)                                           |
| Astell-Burt<br>2019 [186] | Australia         | Grassland,<br>Trees and<br>other plants                                          | Percentage of grass, percentage tree canopy                                                                                                       | Туре              | Urban<br>residents    | General               | Prevalence<br>mental<br>disorder, | Higher percentage of tree canopy was related<br>with a lower incidence of psychological distress,<br>whereas a higher percentage of grass was<br>associated with higher odds of psychological                                                                          |

|                        |                                |                                     |                                                                           |              |                                           |                            | mental<br>health                 | distress. No associations were found on the prevalence of depression / anxiety.                                                                                                             |
|------------------------|--------------------------------|-------------------------------------|---------------------------------------------------------------------------|--------------|-------------------------------------------|----------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                |                                     |                                                                           |              |                                           |                            |                                  |                                                                                                                                                                                             |
| Article                | Country                        | Green space<br>category/<br>quality | Green space<br>description                                                | Type<br>Char | Participants                              | General<br>/ Clinical      | Health<br>outcome                | Results                                                                                                                                                                                     |
| Taylor<br>2015 [187]   | United<br>Kingdom              | Trees and other plants              | Street tree<br>density                                                    | Туре         | National<br>residents                     | General                    | Prevalence<br>mental<br>disorder | Boroughs with lower street tree density had higher anti-depressant prescription rates.                                                                                                      |
| Tomao<br>2018 [188]    | Italy                          | Trees and other plants              | Stand density and tree size in pine wood forests                          | Туре         | Green<br>space<br>visitors                | General                    | Restorative<br>effect            | The basal area of understory trees and shrubs<br>(stand density) was negatively associated with<br>perceived psychological benefits. No association<br>for stem size was found.             |
| Browning<br>2018 [189] | United<br>States of<br>America | Trees and other plants              | Tree coverage<br>(mean of 30 meter<br>percent tree<br>canopy)             | Туре         | National residents                        | General                    | Mental<br>health                 | No relation was found between tree coverage and mental health.                                                                                                                              |
| Browning<br>2019 [190] | United<br>States of<br>America | Trees and other plants              | Tree canopy<br>coverage in<br>different buffers (0<br>– 3000 m)           | Туре         | Elderly<br>(residents<br>nursing<br>home) | Clinical                   | Prevalence<br>mental<br>disorder | The percentage of long-term stay residents with depressive symptoms was lower with more tree canopy coverage, most pronounced for nearest buffers.                                          |
| Johnson<br>2018 [191]  | United<br>States of<br>America | Trees and other plants              | Tree canopy<br>coverage                                                   | Туре         | National residents                        | General                    | Sleep quality                    | A tree canopy of 10% or more was associated with lower odds of weekday (not weekend) short sleep duration.                                                                                  |
| Beyer 2014<br>[192]    | United<br>States of<br>America | Trees and other plants              | Tree canopy<br>coverage, 10 %<br>census blocks                            | Туре         | National<br>residents                     | General                    | Severity<br>mental<br>disorder   | Higher proportion of tree canopy coverage was related with lower levels of stress, anxiety, and depression.                                                                                 |
| Larson<br>2018 [193]   | United<br>States of<br>America | Trees and other plants              | Percentage tree<br>canopy in zip code<br>area (and<br>impervious surface) | Туре         | School<br>children,<br>patients           | General<br>and<br>clinical | Severity<br>mental<br>disorder   | More impervious surface (grey surface) and<br>more tree canopy coverage were both<br>associated with higher odds of moderate to high<br>levels of anxiety for children with autism, similar |

|                              |                   |                                     |                                                                                                                                                                           |                   | mental<br>disorder         |                       |                           | relations were not found for typical youth or children with other diagnoses.                                                                                                                                                                                                                                  |  |  |
|------------------------------|-------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|-----------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                              |                   |                                     |                                                                                                                                                                           |                   |                            |                       |                           |                                                                                                                                                                                                                                                                                                               |  |  |
| Article                      | Country           | Green space<br>category/<br>quality | Green space<br>description                                                                                                                                                | Type<br>Char      | Participants               | General<br>/ Clinical | Health<br>outcome         | Results                                                                                                                                                                                                                                                                                                       |  |  |
| Dzhambov<br>2018 [194]       | Bulgaria          | Trees and other plants              | Tree canopy coverage<br>in 100, 300, 500 m<br>buffers                                                                                                                     | Туре              | Students                   | General               | Mental<br>health          | Tree canopy coverage was not found to be related to mental health.                                                                                                                                                                                                                                            |  |  |
| Mavoa<br>2019 [195]          | Australia         | Biodiversity                        | Flora and fauna richness                                                                                                                                                  | Char              | Urban<br>residents         | General               | Subjective<br>wellbeing   | Flora and fauna species richness were both positively related with subjective wellbeing.                                                                                                                                                                                                                      |  |  |
| Adjei 2015<br>[196]          | United<br>Kingdom | Biodiversity                        | Total plant diversity,<br>diversity of: native<br>plants, introduced<br>plants. in park, garden,<br>green path, woods,<br>nature reserve                                  | Char              | Green<br>space<br>visitors | General               | Affect                    | Positive relation between total plant diversity,<br>diversity of native species, and diversity of<br>introduced species and happiness. More<br>pronounced associations for introduced species.                                                                                                                |  |  |
| Hoyle 2017<br>[197]          | United<br>Kingdom | Biodiversity                        | Wood / shrub /<br>herbaceous,<br>biodiversity: perceived<br>different / UK native<br>plant species.<br>Perceived value of<br>planting for insects /<br>native UK insects. | Type<br>&<br>Char | Green<br>space<br>visitors | General               | Restorative<br>effect     | Woodland: no association for biodiversity on<br>self-reported restorative effect. Shrubland: A<br>higher restorative effect when the perceived<br>number of different plant species was higher.<br>Herbaceous: A higher restorative effect when<br>the perceived value of planting for insects was<br>higher. |  |  |
| Southon<br>2018 [198]        | United<br>Kingdom | Biodiversity                        | meadows, plant<br>species richness                                                                                                                                        | Char              | Green<br>space<br>visitors | General               | Subjective<br>wellbeing   | No associations found for perceived species richness on mental wellbeing.                                                                                                                                                                                                                                     |  |  |
| Rantakokk<br>o 2018<br>[199] | Finland           | Biodiversity                        | Nature diversity                                                                                                                                                          | Char              | Elderly                    | General               | Quality of life, severity | Higher nature diversity resulted in higher quality of life, no associations for depressive symptoms.                                                                                                                                                                                                          |  |  |

| Speldewin<br>de 2009<br>[200]  | Australia | Other green<br>space<br>characteristi      | Dryland salinity                                                                                                   | Char         | Rural<br>residents                 | General               | mental<br>disorder<br>Prevalence<br>mental<br>disorder | An elevated risk of hospitalisations for<br>depression was associated with residence in<br>areas proportionately more affected by dryland                               |
|--------------------------------|-----------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------|-----------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |           | С                                          |                                                                                                                    |              |                                    |                       |                                                        | salinity.                                                                                                                                                               |
| Article                        | Country   | Green space<br>category/<br>quality        | Green space<br>description                                                                                         | Type<br>Char | Participants                       | General<br>/ Clinical | Health<br>outcome                                      | Results                                                                                                                                                                 |
| Speldewin<br>de 2011<br>[201]  | Australia | Other green<br>space<br>characteristi<br>c | Dryland salinity                                                                                                   | Char         | Patients<br>mental<br>disorder     | Clinical              | Suicide rate                                           | Positive association between salinity and suicide<br>rate, higher suicide rates in more saline areas,<br>especially females. Depression associated with<br>salinity.    |
| Björk 2008<br>[202]            | Sweden    | Other green<br>space<br>characteristi<br>c | wild, lush, serene,<br>spacious, culture area<br>within 100 / 300 m of<br>the home                                 | Char         | Rural and<br>suburban<br>residents | General               | Vitality                                               | Vitality increased when the number of recreational characteristics increased within 300 m for females. No association was found for men.                                |
| Annerstedt<br>2012 [203]       | Sweden    | Other green<br>space<br>characteristi<br>c | serene, wild, lush,<br>spacious, culture<br>presence within 300m,<br>amount within 300 m,<br>accessibility         | Char         | Rural<br>residents                 | General               | Mental<br>health                                       | No association for environmental quality on<br>mental health, only for advanced activity access<br>to serene and spacious nature improved mental<br>health for females. |
| Van den<br>Bosch 2015<br>[204] | Sweden    | Other green<br>space<br>characteristi<br>c | Area of 5 different<br>natural characteristics<br>within 300 m buffer:<br>serene, wild, lush,<br>spacious, culture | Туре         | National residents                 | General               | Mental<br>health                                       | Better mental health after moving to an area<br>with more serene nature within a 300 m buffer<br>(females only). No association for the other<br>nature qualities.      |

| Article                               | Country                        | Green space<br>category/<br>quality        | Green space<br>description                                   | Type<br>Char | Participants                     | General<br>/ Clinical | Health<br>outcome       | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------|--------------------------------|--------------------------------------------|--------------------------------------------------------------|--------------|----------------------------------|-----------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Henderson<br>-Wilson<br>2017<br>[176] | Australia                      | Park                                       | Two urban parks,<br>one urban fringe<br>park                 | Туре         | Green<br>space<br>visitors       | General               | Mental health           | Respondents highlighted the importance of urban parks for mental health.                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Windhorst<br>2015<br>[205]            | Canada                         | Park, garden,<br>other green<br>space type | local nature trail,<br>garden,<br>conservation area,<br>park | Туре         | Students                         | General               | Mental health           | Most common feeling in the natural places were calm, relaxation, and peace.                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Liao 2018<br>[206]                    | United<br>States of<br>America | Garden                                     | Garden at nine<br>dementia facilities                        | Туре         | Elderly,<br>dementia<br>patients | Clinical              | Subjective<br>wellbeing | Nurses expressed that garden visits made<br>patients feel independent and happier and<br>stress was relieved by looking at and talking<br>about garden, and experiencing sunshine.<br>Garden elements provided topics and gave<br>memories to talk about, increasing social<br>interaction. Two nurses reported that for some<br>patients the garden visits increased anxiety and<br>agitation, because they could not leave the<br>facility and because the garden was<br>overwhelming / confusing. |
| Pálsdóttir<br>2018<br>[207]           | Sweden                         | Garden                                     | Rehabilitation<br>garden                                     | Туре         | Patients<br>mental<br>disorder   | Clinical              | Affect                  | The rehabilitation garden consisted of different<br>areas, differing in for instance level of<br>cultivation, seclusion, indoors (glass houses).<br>Each area provided benefits for different<br>emotional states (e.g., outer meadows were<br>used for dealing with strong emotions, benches<br>were used when feeling better and up to social<br>contact). Areas also represented memories and<br>metaphors.                                                                                       |

### Table 7. Overview of the included studies; Qualitative



| Article                  | Country           | Green space<br>category/<br>quality | Green space<br>description               | Type<br>Char | Participants                                                    | General<br>/ Clinical | Health<br>outcome       | Results                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------|-------------------|-------------------------------------|------------------------------------------|--------------|-----------------------------------------------------------------|-----------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Packer<br>2013 [208]     | Australia         | Garden                              | Botanic garden and historic museum       | Туре         | Green<br>space<br>visitors                                      | General               | Restorative<br>effect   | Similar to museum visits, the botanic gardens<br>provided restorative experiences through e.g.,<br>peace and quiet, aesthetic qualities, and<br>spaciousness.                                                                                                                                                                                                                     |
| Rostami<br>2014<br>[209] | Iran              | Garden                              | Historical Persian<br>garden             | Туре         | Green<br>space<br>visitors                                      | General               | Subjective<br>wellbeing | Respondents indicated that visiting the garden<br>was beneficial for their wellbeing, observations<br>indicated the importance of the natural<br>features such as shady trees, grass plane, and<br>water feature.                                                                                                                                                                 |
| Moyle<br>2018*<br>[127]  | Australia         | Forest                              | Virtual Reality of a forest environment  | Туре         | elderly,<br>dementia<br>patients                                | Clinical              | Affect                  | Six patients liked being in the virtual forest and<br>it reminded two patients of their childhood,<br>some mentioned elements such as leaves.<br>Some patients did not like the VR experience,<br>or felt it did not affect them. Some family<br>members noted an improvement in mood.<br>Nurses all saw an improvement in mood and<br>calming effect in most (not all) patients. |
| Cook 2019<br>[210]       | United<br>Kingdom | Forest                              | Urban woodland<br>activity program       | Туре         | Elderly,<br>dementia<br>patients                                | Clinical              | Subjective wellbeing    | For some participants, the urban woodlands<br>brought back happy memories and gave a<br>sense of escape.                                                                                                                                                                                                                                                                          |
| Foo 2016<br>[211]        | Malaysia          | Forest                              | Community forest,<br>forest, forest park | Туре         | Green<br>space<br>visitors                                      | General               | Restorative<br>effect   | Each different forest space offers different affordances to different types of visitors.                                                                                                                                                                                                                                                                                          |
| O'Brien<br>2014<br>[212] | United<br>Kingdom | Forest                              | Peri-urban<br>woodlands                  | Туре         | Green<br>space<br>visitors,<br>patients<br>physical<br>disorder | General,<br>clinical  | Subjective<br>wellbeing | Urban woodlands can improve subjective<br>wellbeing, elements are discussed in terms of<br>being away, memories, but also a differing<br>need for facilities for different users and the<br>optimal level of challenge is necessary for<br>people with a disability.                                                                                                              |

| Article                 | Country           | Green space<br>category/<br>quality        | Green space<br>description                                       | Type<br>Char | Participants               | General<br>/ Clinical | Health<br>outcome     | Results                                                                                                                                                                                       |
|-------------------------|-------------------|--------------------------------------------|------------------------------------------------------------------|--------------|----------------------------|-----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hoyle 2017<br>[197]     | United<br>Kingdom | Trees and other plants                     | Vegetation in full<br>bloom (spring)<br>versus green<br>(summer) | Char         | Green<br>space<br>visitors | General               | Restorative<br>effect | Participants preferred green plant over flowering plant for relaxation.                                                                                                                       |
| Thomas<br>2015<br>[213] | Denmark           | Other green<br>space<br>characteristi<br>c | General nature<br>features                                       | Char         | Women                      | General               | Restorative<br>effect | The interviews revealed that specific natural features enabled restorative benefits, sometimes acting as a metaphor or by evoking memories. The actual features differed between individuals. |



# 4.2 Critical Appraisal

## **Experimental studies**

The confidence of no bias for the experimental studies was relatively low, see Figure 3 and Table 8. Only thirteen of the sixty-eight studies (19 %) scored 'high' on six items (half of the items). No study scored more than 6 'high' scores. Most improvement could be made in terms of representative sampling and blinding of both the participants and the outcome assessment. The experimental studies scored relatively well on the items concerning selective reporting, treatment similarity, and the definition of the manipulation. No studies had to be deleted due to low quality, i.e., scoring 'low' on 7 or more items.

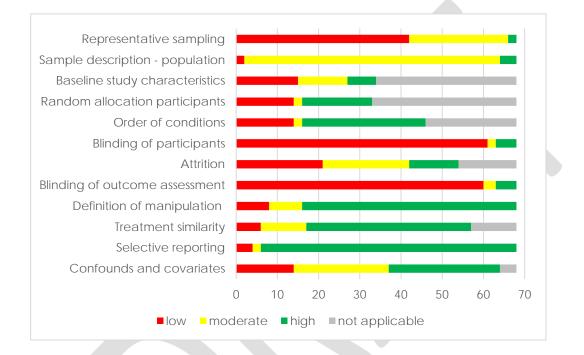



Figure 3. Overall score (confidence of no bias) per item on the critical appraisal for the experimental studies

### Table 8. Confidence of no bias for the individual experimental studies

|                                     | Representative sampling | Sample description - population | Baseline study characteristics | Random allocation participants | Order of conditions | Blinding of participants | Attrition | Blinding of outcome assessment | Definition of manipulation | Treatment similarity | Selective reporting | Confounds and covariates |
|-------------------------------------|-------------------------|---------------------------------|--------------------------------|--------------------------------|---------------------|--------------------------|-----------|--------------------------------|----------------------------|----------------------|---------------------|--------------------------|
| Arnberger 2018                      | -                       |                                 | -                              | n/a                            | n/a                 | -                        | -         | -                              | +                          | +                    | +                   | +                        |
| Aspinall 2015                       | -                       |                                 | n/a                            | n/a                            | -                   | -                        | n/a       |                                | +                          |                      | -                   | -                        |
| Benfield 2018                       |                         |                                 | -                              | +                              | +                   | -                        | -         | -                              |                            | +                    | +                   | +                        |
| Carrus 2015                         | -                       |                                 | -                              | -                              | n/a                 | -                        |           | -                              |                            | -                    | +                   |                          |
| Chang 2016                          | -                       |                                 | n/a                            | n/a                            | -                   | -                        | n/a       | -                              | +                          | +                    | +                   | -                        |
| Chang 2019                          | -                       |                                 |                                | n/a                            | n/a                 | -                        | -         | -                              | -                          | +                    | +                   |                          |
| Chiang 2017 <sup>1</sup>            | -                       |                                 |                                | +                              | +                   | -                        | n/a       | -                              | +                          | +                    | +                   | +                        |
| Cordoza 2018                        | -                       |                                 | n/a                            | n/a                            | +                   | -                        |           | -                              | +                          | +                    | +                   |                          |
| Coventry 2019                       | -                       |                                 |                                | -                              | n/a                 | -                        | -         | -                              |                            |                      | +                   | -                        |
| Detweiler 2008                      | -                       |                                 | n/a                            | n/a                            | n/a                 | +                        |           | -                              |                            | n/a                  | +                   | +                        |
| Detweiler 2009 <sup>1</sup>         | -                       | +                               | n/a                            | n/a                            | -                   | +                        | +         | +                              | +                          | n/a                  | +                   | -                        |
| Elsadek 2019a                       | -                       |                                 | -                              | n/a                            | +                   | -                        | -         | -                              | +                          | +                    | +                   | +                        |
| Elsadek 2019b                       |                         |                                 | -                              | · ·                            | +                   | -                        | -         | -                              | +                          | +                    | +                   | +                        |
| Ewert 2018                          |                         | +                               |                                | n/a                            | n/a                 | -                        | -         | -                              | +                          | -                    | +                   |                          |
| Gatersleben 2013<br>S1 <sup>1</sup> | -                       |                                 | +                              |                                | +                   | -                        | n/a       | +                              | +                          | +                    | +                   | -                        |
| Gatersleben 2013<br>S2              | -                       |                                 | -                              | -                              | n/a                 | -                        | n/a       | -                              | +                          | +                    | +                   | -                        |
| Gathright 2006                      |                         | +                               | n/a                            | n/a                            | -                   | -                        |           | -                              | -                          | -                    | +                   | -                        |
| Gidlow 2016                         |                         |                                 | n/a                            | n/a                            | +                   | -                        |           | -                              | +                          | +                    | +                   | +                        |
| Goto 2018                           |                         |                                 |                                | n/a                            | -                   | -                        |           | -                              | +                          | +                    | +                   |                          |
| Grazuleviciene<br>2016              |                         |                                 | +                              | +                              | n/a                 | -                        | -         | -                              | +                          | +                    | +                   |                          |
| Greenwood 2016 <sup>1</sup>         | -                       |                                 | +                              | +                              | -                   | -                        | +         | -                              | +                          | +                    | +                   |                          |

<sup>1</sup> moderately good quality, high scores on six or more items

|                                 | Representative sampling | Sample description - population | Baseline study characteristics | Random allocation participants | Order of conditions | Blinding of participants | Attrition | Blinding of outcome assessment | Definition of manipulation | Freatment similarity | Selective reporting | Confounds and covariates |
|---------------------------------|-------------------------|---------------------------------|--------------------------------|--------------------------------|---------------------|--------------------------|-----------|--------------------------------|----------------------------|----------------------|---------------------|--------------------------|
| Guéguen 2016                    | -                       |                                 | n/a                            | n/a                            | n/a                 | +                        | n/a       | -                              |                            | +                    | +                   |                          |
| Study 2<br>Ho 2016 <sup>1</sup> |                         |                                 |                                | +                              | +                   | -                        | +         | +                              | +                          | +                    |                     |                          |
| Hull 1995                       |                         |                                 | n/a                            | n/a                            | n/a                 | -                        |           | -                              | -                          | -                    | +                   | -                        |
| Study 2<br>Jo 2019              |                         |                                 | n/a                            | n/a                            | +                   |                          | n/a       |                                | +                          | +                    | +                   |                          |
| Joung 2015                      | -                       |                                 | n/a                            | n/a                            | _                   | _                        |           |                                | +                          | n/a                  | +                   | -                        |
| Kondo 2015 <sup>1</sup>         | +                       |                                 | -                              | -                              | n/a                 | +                        | +         | +                              | _                          | -                    | +                   | +                        |
| Korn 2018                       |                         |                                 | +                              | n/a                            | -                   | _                        | +         | -                              | -                          | n/a                  | +                   |                          |
| Lanki 2017 <sup>1</sup>         | -                       |                                 | n/a                            | +                              | +                   | _                        |           | -                              | +                          | +                    | +                   | +                        |
| Lee 2009                        | -                       |                                 | n/a                            | n/a                            | +                   | -                        |           | -                              | +                          | +                    | +                   |                          |
| Lee 2011 <sup>1</sup>           |                         |                                 | n/a                            | +                              | +                   | -                        | +         | -                              | +                          | +                    | +                   | -                        |
| Lee 2017 <sup>1</sup>           | -                       |                                 | +                              | n/a                            | +                   | _                        | n/a       | -                              | +                          | +                    | +                   | +                        |
| Li 2019                         |                         |                                 | n/a                            | n/a                            | n/a                 | -                        |           | -                              |                            | n/a                  | +                   | +                        |
| Marselle 2016                   | +                       |                                 |                                |                                | n/a                 | -                        | +         | -                              | +                          |                      | +                   |                          |
| Martens 2011                    | -                       |                                 | +                              | +                              | n/a                 | -                        |           | -                              | +                          |                      | +                   | +                        |
| Martensson 2009                 |                         | +                               | n/a                            | n/a                            | n/a                 | -                        |           | -                              |                            |                      | +                   | +                        |
| McAllister 2017                 | -                       |                                 |                                | +                              | n/a                 | -                        |           | -                              | +                          |                      | +                   | +                        |
| Mokhtar 2018                    | -                       |                                 |                                | -                              | n/a                 | -                        | -         | -                              |                            | +                    | +                   |                          |
| Morita 2007                     | -                       |                                 |                                | -                              |                     | -                        | -         | -                              | +                          |                      | +                   | +                        |
| Moyle 2018                      |                         |                                 | n/a                            | n/a                            | n/a                 | +                        | n/a       | -                              | +                          | +                    | +                   |                          |
| Neale 2017                      |                         |                                 | n/a                            | n/a                            | -                   | -                        | -         | -                              | +                          |                      | +                   | -                        |
| Ojala 2019                      | -                       |                                 | +                              | -                              | +                   |                          |           | -                              | +                          |                      | +                   | +                        |
| Olszewska-Guizzo<br>2018        | -                       |                                 | n/a                            | n/a                            | -                   | -                        | n/a       | -                              | +                          | n/a                  | -                   | -                        |
| Orsega-Smith 2004               | -                       |                                 | -                              | -                              | n/a                 | -                        | +         | +                              | -                          | -                    | +                   | +                        |
| Paraskevopoulou<br>2018         |                         |                                 | n/a                            | n/a                            | +                   | -                        |           | -                              | +                          | n/a                  | -                   | +                        |

<sup>1</sup> moderately good quality, high scores on six or more items

|                                            | Representative sampling | Sample description - population | Baseline study characteristics | Random allocation participants | Order of conditions | Blinding of participants | Attrition | Blinding of outcome assessment | Definition of manipulation | Treatment similarity | Selective reporting | Confounds and covariates |
|--------------------------------------------|-------------------------|---------------------------------|--------------------------------|--------------------------------|---------------------|--------------------------|-----------|--------------------------------|----------------------------|----------------------|---------------------|--------------------------|
| Rogerson 2016b                             | -                       |                                 | -                              | -                              | n/a                 | -                        | -         | -                              | +                          |                      | +                   | +                        |
| Sianoja 2018 <sup>1</sup>                  |                         |                                 | -                              | +                              | +                   |                          | +         | -                              | +                          |                      | +                   | +                        |
| Song 2013                                  | -                       |                                 | n/a                            | n/a                            | +                   | -                        | -         | -                              | +                          | n/a                  | +                   | n/a                      |
| Song 2014                                  | -                       |                                 | n/a                            | n/a                            | +                   | -                        | +         | -                              | +                          | +                    | +                   | n/a                      |
| Song 2015a                                 | -                       |                                 | n/a                            | n/a                            | +                   | -                        |           | -                              | +                          | +                    | +                   | n/a                      |
| Song 2015b <sup>1</sup>                    | -                       |                                 | n/a                            | +                              | +                   | -                        |           | -                              | +                          | +                    | +                   | +                        |
| Song 2018                                  | -                       |                                 | -                              | +                              | +                   |                          | -         |                                | -                          | +                    | +                   |                          |
| Song 2019                                  | -                       |                                 | -                              | +                              | +                   | -                        | -         |                                | -                          | +                    | +                   | +                        |
| Sonntag-Öström<br>2014<br>Stigsdetter 2017 |                         |                                 | n/a<br>n/a                     | n/a<br>n/a                     | +                   | -                        |           | -                              | +                          | +                    | +                   | -<br>n/a                 |
| Stigsdotter 2017                           |                         |                                 | n/a                            |                                | +                   |                          |           |                                | ++                         | +<br>+               | +                   | 117a<br>+                |
| Takayama 2014 <sup>1</sup>                 | -                       |                                 |                                | ++                             | Ţ                   | -                        |           |                                | +                          | +                    | +                   |                          |
| Takayama 2017 <sup>1</sup><br>Toda 2013    |                         |                                 | □<br>n/a                       | n/a                            | Ŧ                   |                          | +         | -                              | +                          | n/a                  | +                   | +                        |
| Tsunetsugu 2013                            |                         |                                 | ny a                           | ny a                           | +                   |                          | +         | _                              | +                          | +                    | +                   |                          |
| Tsutsumi 2017                              |                         |                                 | n/a                            | n/a                            |                     |                          |           | _                              | +                          | +                    | +                   |                          |
| Tyrväinen 2014                             |                         |                                 | -                              | -                              | +                   | _                        | _         | _                              | +                          | +                    | +                   | +                        |
| Wallner 2018                               | -                       |                                 | n/a                            | n/a                            |                     | _                        |           | _                              | +                          | +                    | +                   |                          |
| Wang 2016                                  | -                       |                                 |                                | +                              | n/a                 | _                        | n/a       | -                              | +                          | +                    | +                   |                          |
| Yoshida 2015                               |                         |                                 | -                              | -                              | +                   | _                        | n/a       | _                              | +                          | +                    |                     | +                        |
| Yu 2018                                    |                         |                                 | n/a                            | +                              | +                   | -                        | -         | -                              | +                          | +                    | +                   |                          |
| Yuen 2019                                  |                         |                                 | n/a                            | -                              | n/a                 | _                        | n/a       | _                              | +                          | +                    | +                   | +                        |
| Zhang 2018                                 | -                       |                                 | n/a                            | n/a                            | -                   | -                        | -         | _                              | +                          | n/a                  | -                   |                          |
| Zhang 2019                                 | -                       |                                 | n/a                            | n/a                            | -                   | -                        | n/a       | -                              | +                          | n/a                  | +                   | -                        |

<sup>1</sup> moderately good quality, high scores on six or more items

### **Cross-sectional studies**

The confidence of no bias of cross-sectional studies appeared better than that of the experimental studies, although there is much room for improvement (Figure 4; Table 9). Thirty-two of the fifty-five cross-sectional studies (58 %) scored relatively well, with 'high' ratings on more than four of the seven criteria (including eight studies looking at census data, which scored n/a on sample description and random selection by definition). In contrast to the experimental studies, the cross-sectional studies generally scored better on the blinding of participants, but low on the description of the green space manipulation. The description of the sample in relation to the population could also be improved. In line with the experimental studies, no evidence of selective reporting was found. One study was excluded due to low quality, i.e., scoring 'low' on four or more items.

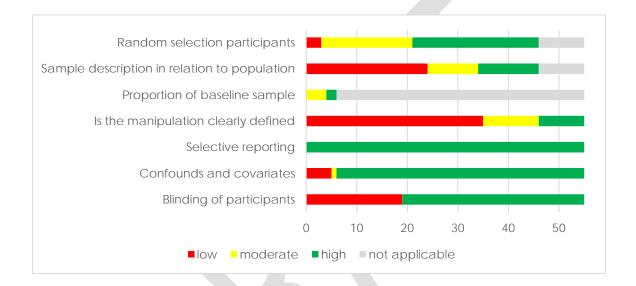



Figure 4. Overall score (confidence of no bias) per item on the critical appraisal for the cross-sectional studies

#### Table 9. Confidence of no bias for the individual cross-sectional studies

|                                                           | Random selection participants | Sample description in relation to<br>population | Proportion of baseline sample<br>available for analysis | Is the manipulation clearly defined | Selective reporting | Confounds and covariates | Blinding of participants |
|-----------------------------------------------------------|-------------------------------|-------------------------------------------------|---------------------------------------------------------|-------------------------------------|---------------------|--------------------------|--------------------------|
| Adjei 2015                                                |                               | -                                               | n/a                                                     | -                                   | +                   | +                        | -                        |
| Alcock<br>2015 <sup>1</sup> [214][210][204][204][<br>204] | +                             |                                                 | +                                                       | -                                   | +                   | +                        | +                        |
| Annerstedt 2012 <sup>1</sup>                              | +                             |                                                 | n/a                                                     | -                                   | +                   | +                        | +                        |
| Astell-Burt 2019 <sup>1</sup>                             | +                             | +                                               |                                                         | -                                   | +                   | +                        | +                        |
| Ayala-Azcárraga 2019                                      |                               |                                                 | n/a                                                     | +                                   | +                   |                          | -                        |
| Balseviciene 2014                                         | -                             | -                                               | n/a                                                     | -                                   | +                   | +                        | +                        |
| Benita 2019 <sup>1</sup>                                  | +                             | -                                               |                                                         |                                     | +                   | +                        | +                        |
| Beyer 2014 <sup>1</sup>                                   | +                             | +                                               | n/a                                                     |                                     | +                   | +                        | -                        |
| Björk 2008 <sup>1</sup>                                   | n/a                           | n/a                                             | n/a                                                     | -                                   | +                   | +                        | +                        |
| Bojorquez 2018 <sup>1</sup>                               | +                             | +                                               | n/a                                                     |                                     | +                   | +                        | +                        |
| Browning 2018 <sup>1</sup>                                | +                             | +                                               | n/a                                                     | -                                   | +                   | +                        | +                        |
| Browning 2019 <sup>1</sup>                                | n/a                           | n/a                                             | n/a                                                     | -                                   | +                   | +                        | +                        |
| Burton 2015 <sup>1</sup>                                  | +                             |                                                 | n/a                                                     | -                                   | +                   | +                        | +                        |
| Coldwell 2018                                             | +                             |                                                 | n/a                                                     | -                                   | +                   | +                        | -                        |
| Dadvand 2019 <sup>1</sup>                                 | +                             | -                                               | n/a                                                     | +                                   | +                   | +                        | -                        |
| Dzhambov 2018 s1                                          |                               | -                                               | n/a                                                     | -                                   | +                   | +                        | -                        |
| Dzhambov 2018 s2                                          |                               | -                                               | n/a                                                     | +                                   | +                   | +                        | -                        |
| Gilchrist 2015 <sup>1</sup>                               |                               | -                                               | n/a                                                     | +                                   | +                   | +                        | +                        |
| Hadavi 2017                                               |                               |                                                 | n/a                                                     |                                     | +                   | -                        | -                        |
| Hansmann 2007                                             |                               | -                                               | n/a                                                     |                                     | +                   | -                        | -                        |
| Henderson-Wilson 2017                                     | +                             | -                                               | n/a                                                     | +                                   | +                   | -                        | -                        |
| Hoyle 2017                                                |                               | -                                               | n/a                                                     | +                                   | +                   | +                        | -                        |

\* low quality: low scores on four or more items; not included in synthesis, <sup>1</sup> good quality, high scores on four or more items

|                               | Random selection participants | Sample description in relation to<br>population | Proportion of baseline sample<br>available for analysis | Is the manipulation clearly defined | Selective reporting | Confounds and covariates | Blinding of participants |
|-------------------------------|-------------------------------|-------------------------------------------------|---------------------------------------------------------|-------------------------------------|---------------------|--------------------------|--------------------------|
| Johnson 2018 <sup>1</sup>     | +                             | +                                               | n/a                                                     | -                                   | +                   | +                        | +                        |
| Kim 2016                      |                               | -                                               | n/a                                                     | -                                   | +                   | +                        | -                        |
| Kohlleppel 2002*              |                               | -                                               | n/a                                                     | -                                   | +                   | -                        | -                        |
| Korpela 2010 <sup>1</sup>     | +                             |                                                 | n/a                                                     |                                     | +                   | +                        | +                        |
| Krekel 2016 <sup>1</sup>      | +                             | +                                               | n/a                                                     | -                                   | +                   | +                        | +                        |
| Larson 2016 <sup>1</sup>      | n/a                           | n/a                                             | n/a                                                     | -                                   | +                   | +                        | +                        |
| Larson 2018 <sup>1</sup>      | +                             | +                                               | n/a                                                     | -                                   | +                   | +                        | +                        |
| Ma 2018                       | +                             | -                                               | n/a                                                     |                                     | +                   | +                        | -                        |
| MacKerron 2013                |                               |                                                 |                                                         | -                                   | +                   | +                        | +                        |
| Marselle 2013 <sup>1</sup>    |                               | -                                               | n/a                                                     | +                                   | +                   | +                        | +                        |
| Mavoa 2019                    | -                             | -                                               | n/a                                                     |                                     | +                   | +                        | +                        |
| Mitchell 2013 <sup>1</sup>    | +                             | +                                               | n/a                                                     |                                     | +                   | +                        | +                        |
| Rantokokko 2018               | -                             |                                                 | n/a                                                     | -                                   | +                   | +                        | +                        |
| Saw 2015                      |                               | -                                               | n/a                                                     | +                                   | +                   | +                        | -                        |
| Scott 2018 <sup>1</sup>       | n/a                           | n/a                                             | n/a                                                     | -                                   | +                   | +                        | +                        |
| Song 2019 <sup>1</sup>        | +                             | +                                               | n/a                                                     | -                                   | +                   | +                        | +                        |
| Southon 2018                  |                               | -                                               | n/a                                                     | +                                   | +                   | +                        | -                        |
| Speldewinde 2009 <sup>1</sup> | n/a                           | n/a                                             | n/a                                                     | -                                   | +                   | -                        | +                        |
| Speldewinde 2011 <sup>1</sup> | n/a                           | n/a                                             | n/a                                                     | -                                   | +                   | +                        | +                        |
| Sugiyama 2016 <sup>1</sup>    | +                             | +                                               | n/a                                                     | -                                   | +                   | +                        | +                        |
| Taylor 2015 <sup>1</sup>      | n/a                           | n/a                                             | n/a                                                     | -                                   | +                   | +                        | +                        |
| Tillmann 2018                 |                               | -                                               | n/a                                                     | -                                   | +                   | +                        | +                        |
| Tomao 2018                    | +                             | -                                               | n/a                                                     | -                                   | +                   | +                        | -                        |
| Tsai 2018 <sup>1</sup>        | n/a                           | n/a                                             | n/a                                                     | -                                   | +                   | +                        | +                        |

\* low quality: low scores on four or more items; not included in synthesis, <sup>1</sup> good quality, high scores on four or more items

|                                 | Random selection participants | Sample description in relation to<br>population | Proportion of baseline sample<br>available for analysis | ls the manipulation clearly defined | Selective reporting | Confounds and covariates | Blinding of participants |
|---------------------------------|-------------------------------|-------------------------------------------------|---------------------------------------------------------|-------------------------------------|---------------------|--------------------------|--------------------------|
| Van Aart 2018                   |                               | -                                               |                                                         | -                                   | +                   | +                        | -                        |
| Van den Bosch 2015 <sup>1</sup> | +                             |                                                 | +                                                       | -                                   | +                   | +                        | +                        |
| Van Dillen 2012 <sup>1</sup>    | +                             |                                                 | n/a                                                     | -                                   | +                   | +                        | +                        |
| White 2013 <sup>1</sup>         | +                             | +                                               | n/a                                                     | -                                   | +                   | +                        | +                        |
| Wood 2017                       |                               | -                                               | n/a                                                     | -                                   | +                   | +                        | +                        |
| Wu 2017 <sup>1</sup>            | n/a                           | n/a                                             | n/a                                                     | -                                   | +                   | +                        | +                        |
| Wyles 2019 <sup>1</sup>         | +                             |                                                 | n/a                                                     |                                     | +                   | +                        | +                        |
| Zhang 2019 a                    |                               | -                                               | n/a                                                     |                                     | +                   | +                        | _                        |
| Zhang 2019 b <sup>1</sup>       | +                             | +                                               | n/a                                                     |                                     | +                   | +                        | +                        |

\* low quality: low scores on four or more items; not included in synthesis, <sup>1</sup> good quality, high scores on four or more items



## **Qualitative studies**

The confidence of no bias for the qualitative studies was reasonable with seven of the twelve studies scoring at least three 'high' scores out of the five items (58 %). One study, however, was excluded due to low quality; having four 'low' scores. All studies scored low on stakeholder involvement. Furthermore, there was also room for improvement in terms of the involvement of independent coders and raters. The studies scored good on the description of the source of the target population and the application of triangulation in the studies. See Table 10 and Figure 5.

#### Table 10. Confidence of no bias for the individual qualitative studies

|                                    | Source of target population | Recruitment description | Independent raters | stakeholder involvement in the<br>research process | Triangulation |
|------------------------------------|-----------------------------|-------------------------|--------------------|----------------------------------------------------|---------------|
| Rostami 2014 <sup>1</sup>          | +                           | +                       | -                  | -                                                  | +             |
| Windhorst 2015                     | +                           | +                       |                    | -                                                  |               |
| Thomas 2015 <sup>1</sup>           | +                           | +                       | -                  | -                                                  | +             |
| Henderson-Wilson 2017 <sup>1</sup> | +                           | +                       | +                  | -                                                  | +             |
| Pálsdóttir 2018                    | +                           | +                       |                    | -                                                  | -             |
| Packer 2013*                       | -                           |                         | -                  | -                                                  | -             |
| Foo 2016                           | +                           |                         | -                  | -                                                  | +             |
| O'Brien 2014 <sup>1</sup>          | +                           | +                       | +                  | -                                                  | +             |
| Liao 2018 <sup>1</sup>             | +                           | +                       |                    | -                                                  | +             |
| Moyle 2018                         | +                           |                         |                    | -                                                  | +             |
| Cook 2019 <sup>1</sup>             | +                           | +                       |                    | -                                                  | +             |
| Hoyle 2017 <sup>1</sup>            | +                           | +                       |                    | -                                                  | +             |

\* low quality: low scores on four or more items; not included in synthesis, <sup>1</sup> good quality, high scores on four or more items



Figure 5. Overall score (confidence of no bias) per item on the critical appraisal for the qualitative studies



## 4.3 Synthesis

### **Descriptive synthesis**

The descriptive synthesis included six different factors: the country in which the study was conducted; whether the sample was drawn from a general, at-risk, or clinical population; the type of population; the type of health outcomes; the assessment environment; the design of the study (cross-sectional versus longitudinal, or within- between- mixed- subjects design or pre-post design). The narrative synthesis was performed for all papers, and for the nine green space types / characteristics subcategories. Each section will focus on one subcategory and begins with the subset of papers that directly compared green space types and characteristics, followed by the papers focusing on green space characteristics and last the outcomes of the specific green space type will be discussed.

### **Experimental**

#### Overall

The sixty-eight studies were conducted in twenty different countries. About one-third of the studies (twenty-four studies) were conducted in Europe. The largest proportion of studies were conducted in Japan (seventeen studies), followed by the USA with ten studies, the UK with eight studies, China with five studies, and Taiwan and Finland with 4 studies each. Austria, Australia, Korea, Switzerland, and Sweden all contributed with two studies. All other countries contributed only one study, see Table 11.

Fifteen different types of populations were studied and most often a convenience sample consisting of students was used in the experiments (twenty-nine studies), followed by the elderly in ten studies, employees in nine studies, green space visitors and patients with a mental disorder in six studies. Local residents and hikers / athletes were each included in four studies, volunteers and adolescents in three studies, and patients with a physical disorder in two studies. All other population types were included in one study, see Table 12.

The majority of studies (fifty-nine) included the general population, whereas nine studies included a clinical population [97, 115, 116, 121, 127, 134, 137, 144, 145], of which one study also including an at-risk population [134]. Thirteen different health outcomes were studied of which affect received the most attention, in forty-five studies. Physiological stress was also included as outcome measure relatively often, in thirty-four studies. Perceived stress was studied in twelve studies, the restorative effect in eight studies, brain activity in five studies, vitality in four studies, and subjective wellbeing, severity of a mental disorder, and problem behaviour in three studies. Quality of life was targeted in two studies, and all other health outcomes were investigated in one study, see Table 13.

|             | #  | Paper(s)                                |
|-------------|----|-----------------------------------------|
| Country     |    |                                         |
| Japan       | 17 | [91, 107, 108, 110, 121, 123, 125, 126, |
|             |    | 128, 129, 131, 132, 134, 135, 138, 140, |
|             |    | 147]                                    |
| USA         | 10 | [93-95, 101, 106, 114] [115-117, 150]   |
| UK          | 8  | [88-90, 98, 141, 142, 148, 153]         |
| China       | 5  | [96, 100, 105, 118, 146]                |
| Taiwan      | 4  | [133, 139, 144, 149]                    |
| Finland     | 4  | [87, 111-113]                           |
| Austria     | 2  | [103, 143]                              |
| Australia   | 2  | [104, 127]                              |
| Korea       | 2  | [119, 124]                              |
| Switzerland | 2  | [130] [143]                             |
| Sweden      | 2  | [137, 151]                              |
| Malaysia    | 1  | [99]                                    |
| France      | 1  | [102]                                   |
| Peru        | 1  | [120]                                   |
| Canada      | 1  | [122]                                   |
| Lithuania   | 1  | [97]                                    |
| Denmark     | 1  | [136]                                   |
| Greece      | 1  | [145]                                   |
| Portugal    | 1  | [152]                                   |
| Italy       | 1  | [92]                                    |

#### Table 11. Overview of the countries for the included experimental studies



|                            | #  | Papers                                   |
|----------------------------|----|------------------------------------------|
| Population                 |    |                                          |
| Students                   | 29 | [89, 91] [99, 100, 105-108, 110, 134]    |
|                            |    | [118, 122-125, 128-132, 134, 135] [136,  |
|                            |    | 138, 139] [146] [143, 152, 153]          |
| Elderly                    | 10 | [88] [94, 96] [115, 116, 121, 127, 130]  |
|                            |    | [140] [148]                              |
| Employees                  | 9  | [87] [111-113, 117, 130, 131] [143, 152] |
| Green space visitors       | 6  | [92] [93, 95, 101, 102, 114]             |
| Patients mental disorder   | 6  | [115, 116, 121, 127] [137] [145]         |
| Local residents            | 4  | [98, 104] [120] [150]                    |
| Hikers / Athletes          | 4  | [104, 142, 147, 148]                     |
| Volunteers                 | 3  | [126, 133] [149]                         |
| Adolescents                | 3  | [103] [119] [141]                        |
| Patients physical disorder | 2  | [97] [144]                               |
| Conservation volunteers    | 1  | [90]                                     |
| Pupils                     | 1  | [103]                                    |
| Online panel members       | 1  | [104]                                    |
| University visitors        | 1  | [146]                                    |
| Schoolchildren             | 1  | [151]                                    |

# Table 12. Overview of the population types for the included experimental studies

# Table 13. Overview of the health outcomes for the included experimental studies

| Health outcome           |    |                                             |
|--------------------------|----|---------------------------------------------|
| Affect                   | 45 | [88, 90, 91] [95-102, 104-108, 110, 111,    |
|                          |    | 134] [119, 122-135] [136-140] [142, 145-    |
|                          |    | 148, 153]                                   |
| Physiological stress     | 34 | [93, 94, 97, 99, 100, 107, 108, 110-114,    |
|                          |    | 134] [118-123, 128, 129, 132-134] [136-     |
|                          |    | 138, 140, 141] [143, 147, 149, 150, 153]    |
| Perceived stress         | 12 | [87, 90] [93, 94, 98, 114] [117, 120] [140] |
|                          |    | [142, 143, 150]                             |
| Restorative effect       | 8  | [98, 99, 111, 112] [125, 131] [146, 147]    |
| Brain activity           | 5  | [89] [119, 124, 139] [152]                  |
| Vitality                 | 4  | [111, 112] [125, 146]                       |
| Subjective wellbeing     | 3  | [92] [103] [143]                            |
| Problem behaviour        | 3  | [116, 120, 121]                             |
| Severity mental disorder | 3  | [115, 117, 151]                             |
| Quality of life          | 2  | [120, 144]                                  |
| Self-esteem              | 1  | [142]                                       |
| Mental health            | 1  | [94]                                        |
| Satisfaction with life   | 1  | [101]                                       |

Thirteen studies included an indirect measure of green spaces [100, 104, 106, 119, 121, 127, 132, 133] [138, 139, 145, 152, 153], these studies all investigated the effects of viewing nature (as environmental assessment), with one exception that focused on sound rather than viewing [138]. A health care environment was the focus in five studies [115-117, 121, 144]. The residential area [150] and the school environment [151] were both targeted in one study. All other studies focused on effects of a green space visit. The oldest paper stemmed from 1995 [95] and the participant numbers ranged from 7 to 585. The majority of studies (forty-four) had a pre-post design, ten studies had a within-subjects design (without pre-post measurements) [89, 112, 118-120, 124, 132, 137, 138, 152], nine studies had a between-subjects design [92, 94, 102, 104-106, 139, 150, 151], and five studies used a mixed design [88, 91, 115, 144, 145].

## Comparison

A total of twenty-two cross-sectional studies compared one or more green space types or green space characteristics, see Table 14. Most studies compared different green space types, but characteristics of green space were included in ten studies [92, 103, 118, 130, 131, 139, 143-146]. The studies were conducted in thirteen different countries, with three studies in the UK and Finland, and two studies in Taiwan, Switzerland, China, the USA, Austria, and Japan. All other countries represented a single study, see Table x.

The majority of studies (eighteen) focused on the general population, only four studies included a clinical population [121, 137, 144, 145]. Students participated in seven studies and employees in six studies. Patients with a mental disorder and green space visitors were each recruited in three studies and elderly and local residents in two studies. All other population types were sampled in a single study, see Table 14.

Affect received most attention, in fourteen studies, followed by physiological stress in nine studies. Other health outcomes targeted were restorative effect (four studies), perceived stress (four studies), subjective wellbeing (2 studies), and vitality (2 studies). Single studies included other health outcomes, see Table x.

The majority of studies looked at actual exposure, whereas four studies studied indirect exposure [104, 139, 145]. The studies focused mostly on a visit to a green space (fifteen studies [90, 92, 93, 98, 111-114, 118, 122, 130, 131, 137, 142, 146]), while two studies looked at either the health care environment [121, 144] or at effects of viewing green space [139, 145].

The majority of studies employed a pre-post design (fourteen studies) [90, 93, 98, 103, 111, 113, 114, 121, 122, 130, 131, 142, 143, 146], a between-subjects design was opted for in three studies [92, 104, 139], a within-subjects design was also employed in three studies [112, 118, 137], and two studies used a mixed design [144, 145].



|                            | #  | Paper(s)                                   |
|----------------------------|----|--------------------------------------------|
| Country                    |    |                                            |
| UK                         | 3  | [90, 98, 142]                              |
| Finland                    | 3  | [111-113]                                  |
| Taiwan                     | 2  | [139, 144]                                 |
| Switzerland                | 2  | [130, 143]                                 |
| China                      | 2  | [118, 146]                                 |
| USA                        | 2  | [93, 114]                                  |
| Austria                    | 2  | [103, 143]                                 |
| Japan                      | 2  | [121, 131]                                 |
| Australia                  | 1  | [104]                                      |
| Greece                     | 1  | [145]                                      |
| Canada                     | 1  | [122]                                      |
| Sweden                     | 1  | [137]                                      |
| Italy                      | 1  | [92]                                       |
| Population                 |    |                                            |
| Students                   | 7  | [118, 122, 130, 131, 139, 143, 146]        |
| Employees                  | 6  | [111-113, 130, 131, 143]                   |
| Patients mental disorder   | 3  | [121, 137, 145]                            |
| Green space visitors       | 3  | [92, 93, 114]                              |
| Hikers / athletes          | 2  | [104, 142]                                 |
| Elderly                    | 2  | [121, 130]                                 |
| Local residents            | 2  | [98, 104]                                  |
| Pupils                     | 1  | [103]                                      |
| Adolescents                | 1  | [103]                                      |
| Members online panel       | 1  | [103]                                      |
| Conservation volunteers    | 1  | [104]                                      |
| Patients physical disorder | 1  | [144]                                      |
| University visitors        | 1  | [144]                                      |
| University visitors        | T  | [140]                                      |
| Health outcome             |    |                                            |
| Affect                     | 14 | [90, 93, 98, 104, 111, 114, 122, 130, 131, |
|                            |    | 137, 139, 142, 145, 146]                   |
| Physiological stress       | 9  | [93, 111, 113, 114, 118, 122, 137, 139,    |
|                            |    | 143]                                       |
| Restorative effect         | 4  | [92, 111, 112, 131]                        |
| Perceived stress           | 4  | [90, 114, 142, 143]                        |
| Subjective wellbeing       | 2  | [103, 143]                                 |
| Vitality                   | 2  | [111, 112]                                 |
| Quality of life            | 1  | [144]                                      |
| Self-image                 | 1  | [142]                                      |
| Brain activity             | 1  | [139]                                      |
| Problem behaviour          | 1  | [121]                                      |

# Table 14. Summary for studies with a comparison for the experimental studies

#### Urban Green Space

Six studies, conducted in four different countries investigated effects of urban green space on wellbeing. Five of these studies were conducted in Europe, see Table 15. Four different population types were included; students (2 studies), elderly, employees, and green space visitors. All experiments included members of the general population and the manipulations used were all direct exposures to green space. Four different health outcomes were included; affect (four studies), perceived stress (two studies), brain activity, and subjective wellbeing. All six studies investigated effects of visiting green spaces. Two studies employed a pre-post design [87, 90], two studies a mixed design [88, 91], and a within-subjects design [89] and between-subjects design [92] were used in one study each.

|                      | # | Paper(s)     |
|----------------------|---|--------------|
| Country              |   |              |
| UK                   | 2 | [88-90]      |
| Japan                | 1 | [91]         |
| Finland              | 1 | [87]         |
| Italy                | 1 | [92]         |
|                      |   |              |
| Population           |   |              |
| Students             | 2 | [89, 91]     |
| Elderly              | 1 | [88]         |
| Employees            | 1 | [87]         |
| Green space visitors | 1 | [92]         |
| Health outcome       |   |              |
| Affect               | 3 | [88, 90, 91] |
| Perceived stress     | 2 | [87, 90]     |
| Brain activity       | 1 | [89]         |
| Subjective wellbeing | 1 | [92]         |

#### Table 15. Summary for studies included in the urban green space category of the experimental studies

#### Park

A total of twenty-two studies investigated effects of park environments on mental health, divided over eleven countries. The majority of studies were performed outside Europe (thirteen studies outside Europe), with most studies in the USA (six), followed by China, Japan, and Finland with three studies. All other countries were represented in a single study, see Table 16.



|                          | #  | Paper(s)                                |
|--------------------------|----|-----------------------------------------|
| Country                  |    |                                         |
| USA                      | 6  | [93-95, 101, 106, 114]                  |
| China                    | 3  | [96, 100, 105]                          |
| Japan                    | 3  | [107, 108, 134]                         |
| Finland                  | 3  | [111-113]                               |
| Lithuania                | 1  | [97]                                    |
| UK                       | 1  | [98]                                    |
| Malaysia                 | 1  | [99]                                    |
| France                   | 1  | [102]                                   |
| Austria                  | 1  | [103]                                   |
| Australia                | 1  | [104]                                   |
| Italy                    | 1  | [92]                                    |
| ,                        | _  |                                         |
| Population               |    |                                         |
| Green space visitors     | 7  | [92] [93, 95, 96, 101, 102, 114]        |
| Students                 | 7  | [99, 100, 105-108, 134]                 |
| Employees                | 3  | [111-113]                               |
| Local residents          | 2  | [98, 104]                               |
| Patients mental disorder | 1  | [97]                                    |
| Elderly                  | 1  | [94]                                    |
| Adolescents              | 1  | [103]                                   |
| Pupils                   | 1  | [103]                                   |
| Members online panel     | 1  | [104]                                   |
| Hikers / athletes        | 1  | [104]                                   |
|                          |    |                                         |
| Health outcome           |    |                                         |
| Affect                   | 15 | [95-102, 104-108, 111, 134]             |
| Physiological stress     | 11 | [93, 94, 97, 99, 100, 107, 108, 111-114 |
|                          |    | 134]                                    |
| Perceived stress         | 4  | [93, 94, 98, 114]                       |
| Restorative effect       | 4  | [98, 99, 111, 112]                      |
| Vitality                 | 2  | [111, 112]                              |
| Subjective wellbeing     | 2  | [92] [103]                              |
| Mental health            | 1  | [94]                                    |
| Satisfaction with life   | 1  | [101]                                   |

# Table 16. Summary for studies included in the park category of the experimental studies

Green space visitors and students were included most often, both in seven studies. Employees participated in three studies and local residents in two studies, all other population types were included only once, see Table 16. The majority of studies included members from the general population, whereas one study included a clinical population [97]. Eight different health outcomes were targeted, with most emphasis on affect (fifteen studies) and physiological stress (eleven studies), followed by perceived stress and restorative effects, both investigated in four studies. Three studies included vitality and subjective wellbeing as outcome, whereas the other two health outcomes were only targeted in a single study, see Table x. The majority of the studies investigated direct effects of park exposure during green space visits, whereas three studies employed an indirect manipulation of park environments and investigated the effects of viewing park rather than visiting it [100, 104, 106]. A pre-post design was employed most often (sixteen studies), five studies had a between-subjects design [94, 102, 104-106] and one study had a within-subjects design [112].

## Garden

In the garden category, studies investigated public gardens, gardens at mental healthcare facilities, and private gardens. The eight studies in this category were conducted in five different countries, with three of them in the USA. All other studies were conducted in a single country, see Table 17.

| # | Paper(s)                                                                                    |
|---|---------------------------------------------------------------------------------------------|
|   |                                                                                             |
| 3 | [115-117]                                                                                   |
| 1 | [118]                                                                                       |
| 1 | [119]                                                                                       |
| 1 | [120]                                                                                       |
| 1 | [121]                                                                                       |
| 1 | [122]                                                                                       |
|   |                                                                                             |
|   |                                                                                             |
| 3 | [115, 116, 121]                                                                             |
| 3 | [115, 116, 121]                                                                             |
| 2 | [118, 122]                                                                                  |
| 1 | [117]                                                                                       |
| 1 | [119]                                                                                       |
| 1 | [120]                                                                                       |
|   |                                                                                             |
|   |                                                                                             |
| 5 | [118-122]                                                                                   |
| 3 | [116, 120, 121]                                                                             |
| 3 | [117, 119, 122]                                                                             |
| 2 | [115, 117]                                                                                  |
| 1 | [119]                                                                                       |
| 1 | [120]                                                                                       |
| 1 | [120]                                                                                       |
|   | 3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>3<br>3<br>2<br>1<br>1<br>1<br>1 |

Table 17. Summary for studies included in the garden category of the experimental studies



Three studies targeted both elderly patients with a mental disorder. These three studies were also the only studies targeting a clinical sample [115, 116, 121]. Students participated in two studies. The other population types were only included once, see Table x. Seven different health outcomes were investigated, mostly physiological stress (five studies), followed by problem behaviour and affect (three studies), and the severity of a mental disorder in two studies. The other three health outcomes were only investigated once, see Table x. Four studies investigated the effects of a garden in a healthcare facility [115-117, 121], two studies investigated the effects of visiting a garden [120] [122], and two studies investigated effects of viewing a garden [118, 119]. One study used an indirect manipulation of green space [119]. Half of the studies used a within-subjects design [119] [115, 118, 120], whereas the other half employed a pre-post design [116, 117, 121] [122].

#### Forest / woodland

The forest category is dominated by Asian studies. Of the twenty-five studies, thirteen were conducted in Asia and only nine in Europe. After Japan with ten studies, Finland contributed three studies and Australia and Taiwan both two studies. Single studies were conducted in all other countries, see Table 18. Three studies used a clinical population [127, 134, 137], of which 1 study also included at-risk participants [134]. All other experiments used members of the general population. A total of eleven different population types were included. Most experiments did convenience sampling by recruiting students (thirteen studies), followed by employees (four studies), and elderly, green space visitors, adolescents, volunteers, and patients with a mental disorder (all with two studies). All other population types were sampled only once, see Table x. Seven different health outcomes were investigated. Most emphasis was on affect (twenty studies), often combined with measures of physiological stress (fifteen studies). The other health outcomes received far less attention; restorative effect was targeted in four studies, vitality in three studies, and subjective wellbeing, brain activity, and perceived stress in two studies. The majority of studies investigated effects of a visit to the forest (seventeen studies), five studies had a view of the forest as a manipulation [104, 127, 132, 133, 139], and one focused on listening to sounds of the forest [138]. These six studies all employed an indirect manipulation of green space [104, 127, 132, 133, 138, 139]. The majority of studies also had a pre-post design (eighteen studies), five studies had a within-subjects design [112, 124, 132, 137, 138] and two studies a between-subjects design [104, 139].

|                          | #  | Paper(s)                                 |
|--------------------------|----|------------------------------------------|
| Country                  |    |                                          |
| Japan                    | 10 | [123, 125, 128, 129, 131, 132, 134, 135] |
| •                        |    | [138, 140]                               |
| Finland                  | 3  | [111-113]                                |
| Australia                | 2  | [104] [127]                              |
| Taiwan                   | 2  | [133] [139]                              |
| Austria                  | 1  | [103]                                    |
| Italy                    | 1  | [92]                                     |
| USA                      | 1  | [114]                                    |
| Korea                    | 1  | [124]                                    |
| Switzerland              | 1  | [130]                                    |
| Denmark                  | 1  | [136]                                    |
| Sweden                   | 1  | [137]                                    |
| UK                       | 1  | [141]                                    |
|                          |    |                                          |
| Population               |    |                                          |
| Students                 | 13 | [123-125, 128-132, 134, 135] [136, 138,  |
|                          |    | 139]                                     |
| Employees                | 4  | [111-113] [131]                          |
| Elderly                  | 3  | [127, 130] [140]                         |
| Green space visitors     | 2  | [92] [114]                               |
| Adolescents              | 2  | [103] [141]                              |
| Volunteers               | 2  | [126, 133]                               |
| Patients mental disorder | 2  | [127] [137]                              |
| Pupils                   | 1  | [103]                                    |
| Local residents          | 1  | [104]                                    |
| Members online panel     | 1  | [104]                                    |
| Hikers / athletes        | 1  | [104]                                    |
| Health outcome           |    |                                          |
| Affect                   | 20 | [104, 111] [123-135] [136-140]           |
| Physiological stress     | 15 | [111-114] [123, 128, 129, 132-134] [136- |
|                          | 15 | 138, 140, 141]                           |
| Restorative effect       | 4  | [111, 112] [125, 131]                    |
| Vitality                 | 3  | [111, 112] [125]                         |
| Subjective wellbeing     | 2  | [92] [103]                               |
|                          | 2  |                                          |
| Perceived stress         | 2  | [114] [140]                              |

# Table 18. Summary for studies included in the forest category of the experimental studies



#### Grassland and Meadows

Only two studies looked at effects of grassland and meadows. One within-subjects study from the UK studied the effects of grassland on affect, perceived stress, and self-image for runners, focusing on a physical exercise environment [142]. The second study employed a pre-post design and was conducted in Austria and Switzerland. It investigated the effects of visiting a meadow on perceived stress, physiological stress, subjective wellbeing for students and employees [143]. In both studies, members of the general population participated.

## Trees and other plants

Five studies from four countries focused on Trees and other plants. Two of these studies were conducted in Taiwan, while the other studies were conducted in a single country, see Table 19. Two studies focused on a clinical sample [144, 145], and included population types were students (two studies), patients mental disorder, patients physical disorder, university visitors, and athletes (climbers), see Table 19. Six different mental health outcomes were included. Affect was explored in all-but-one of the studies, followed by restorative effect in two studies. All other outcomes were studied in a single study, see Table 19.

|                            | щ | Description    |
|----------------------------|---|----------------|
|                            | # | Paper(s)       |
| Country                    |   |                |
|                            | 2 | [120, 144]     |
| Taiwan                     | 2 | [139, 144]     |
| Japan                      | 1 | [147]          |
| China                      | 1 | [146]          |
| Greece                     | 1 | [145]          |
|                            |   |                |
| Population                 |   |                |
| Students                   | 2 | [139, 146]     |
| Patients physical disorder | 1 | [144]          |
| Patients mental disorder   | 1 | [145]          |
| University visitors        | 1 | [146]          |
| Athletes (climbers)        | 1 | [147]          |
|                            |   |                |
| Health outcome             |   |                |
| Affect                     | 4 | [139, 145-147] |
| Restorative effect         | 2 | [146, 147]     |
| Vitality                   | 1 | [146]          |
| Brain activity             | 1 | [139]          |
| Quality of life            | 1 | [144]          |
| Physiological stress       | 1 | [147]          |

# Table 19. Summary for studies included in the Trees and other plants category of the experimental studies

Two studies used an indirect manipulation of Trees and other plants [139, 145], both focusing on the effects of a view to nature. The other studies focused on a healthcare environment [144], physical activity

environment [147], and visiting a green environment [146]. Two studies had a pre-post design [146] [147], two studies a mixed design [145] [144], and one a between-subjects design [139].

## Other green space type

Three studies incorporated a green space type that was not captured by any of the previous categories. These green space types were a wilderness setting [93] and green stormwater infrastructure in the USA [150], and a rock outcrop in Sweden [137]. One study included participants from a clinical population, which were patients with a mental disorder [137]. This study employed a within-subjects design and investigated effects of visiting green space on affect, and physiological stress. In a second study, students were recruited and effects of a visit to the wilderness on perceived and physiological stress was measured in a pre-post design. The third study investigated effects within the residential area, targeting local residents, on both perceived and physiological stress in a between-subjects design [150]. All studies employed a direct manipulation of the green space.

## Biodiversity

Three studies investigated effects of biodiversity on mental health, in Italy [92], the UK [148], and Taiwan [149]. All 3 studies sampled from the general population, and recruited green space visitors [92], walkers and elderly [148], and volunteers [149]. Three different health outcome measured were included: subjective wellbeing [92], affect [148], and physiological stress [149]. All studies looked at the effects of green space visits, either with a pre-post design [148, 149] or a between-subjects design [92].

## Other green space characteristic

Three studies investigated a green space characteristic that was not yet captured by the previous categories. One study in Sweden investigated the effects of schoolyard design on the severity of a mental disorder (ADHD), with schoolchildren as study subjects and employing a between-subjects design [151]. The second study, conducted in Portugal, investigated the effects of viewing contemplative space on brain activity [152], recruiting both students and employees in a within-subjects design with an indirect green space manipulation. The third and last study investigated effects of prospect and refuge with both a direct (visiting green space) and indirect (viewing green space) manipulation [153]. This study was conducted in the UK, with a pre-post design, students as participants, and affect and physiological stress as outcome measures.



## **Cross-sectional**

#### Overall

All cross-sectional studies investigated effects of direct exposure to green spaces. Overall, fifty-three crosssectional studies were included from eighteen different countries. The highest number of studies were conducted in the United Kingdom (thirteen) and the United States of America (eleven), followed by Australia with seven studies. Three studies were conducted in Singapore and Sweden, and two in China, Mexico, and Finland. All other countries contributed one study, see Table 20.

|                 | #  | Paper(s)                                |
|-----------------|----|-----------------------------------------|
|                 |    |                                         |
| Country         |    |                                         |
| UK              | 13 | [24, 155, 156, 161, 163, 177, 183-185,  |
|                 |    | 187, 196-198, 215]                      |
| USA             | 11 | [158, 160, 169, 173, 179, 181, 189-193] |
| Australia       | 7  | [165, 171, 176, 186, 195, 200, 201]     |
| Singapore       | 3  | [164, 170, 174]                         |
| Sweden          | 3  | [202-204]                               |
| China           | 2  | [157, 167]                              |
| Mexico          | 2  | [168, 175]                              |
| Finland         | 2  | [162, 199]                              |
| Canada          | 1  | [72]                                    |
| Iran            | 1  | [36]                                    |
| The Netherlands | 1  | [154]                                   |
| Bulgaria        | 1  | [194]                                   |
| Germany         | 1  | [159]                                   |
| Belgium         | 1  | [180]                                   |
| Switzerland     | 1  | [172]                                   |
| Lithuania       | 1  | [166]                                   |
| Korea           | 1  | [182]                                   |
| Italy           | 1  | [188]                                   |

#### Table 20. Overview of the countries for the included cross-sectional studies

The majority of studies included the general population. One study focused on an at-risk population [173], whereas four further studies included a clinical population [181, 190, 193, 201]. By far the most studies (nineteen) sampled from the entire population of a country (national residents). Other populations that were sampled relatively often were green space visitors (nine studies) and schoolchildren (six studies). Urban residents and the elderly were both sampled in four studies, whereas local and rural residents where each included in three studies, and students, adolescents, athletes / hikers, and patients with a mental disorder in two studies. All other population types were included in one study, see Table 21.

|                          | #  | Papers                                  |
|--------------------------|----|-----------------------------------------|
| Population               |    |                                         |
| National residents       | 19 | [24, 156, 159, 163, 168, 169, 171, 174, |
|                          |    | 175, 179, 180, 182, 183, 185, 187, 189, |
|                          |    | 191, 192, 204]                          |
| Green space visitors     | 9  | [157, 163, 172, 175, 176, 188, 196-198] |
| Schoolchildren           | 6  | [72, 160, 170, 173, 181, 193]           |
| Urban residents          | 4  | [154, 155, 186, 195]                    |
| Elderly                  | 4  | [167, 177, 190, 199]                    |
| Local residents          | 3  | [158, 162, 165]                         |
| Rural residents          | 3  | [200, 202, 203]                         |
| Students                 | 2  | [164, 216]                              |
| Adolescents              | 2  | [36] [170]                              |
| Hikers / athletes        | 2  | [24, 161]                               |
| Patients mental disorder | 2  | [193, 201]                              |
| Young mothers            | 1  | [166]                                   |
| Employees                | 1  | [184]                                   |

Table 21. Overview of the population types for the included cross-sectional studies

Mental health and subjective wellbeing received the most attention, respectively with fifteen and thirteen studies. Restorative effect was investigated in 6 studies and affect, severity of a mental disorder, and the prevalence of a mental disorder in five studies. Perceived stress, satisfaction with life, and quality of life were the focus in four studies and behavioural problems in three studies. All other health outcomes were targeted once, see Table 22.

The majority of the papers focused on the residential area (thirty-four studies), a green space visit was assessed in eleven studies [36, 155, 157, 163, 172, 175, 176, 188, 196-198], a physical exercise environment [24, 161], a school environment [173, 181], and all places visited [170, 183] were all addressed in two studies. Single studies investigated favourite places [81], work environment [184], and a healthcare environment [190].

The "oldest" paper included stemmed from 2008 and all studies measured direct exposure (as opposed to indirect exposure through for instance images or videos) to green. The participant numbers ranged from 140 to 97.574.613. The majority of studies had a cross-sectional design (forty-one), and fewer a longitudinal design (fourteen; [72, 165, 166, 170, 173, 180, 183, 185, 186, 190, 191, 201, 202, 204]).



#### Table 22. Overview of the health outcomes for the included cross-sectional studies

| Health outcome             |    |                                           |
|----------------------------|----|-------------------------------------------|
| Mental health              | 15 | [24, 179, 185] [168] [154, 171, 174, 176, |
|                            |    | 179, 185, 186, 189, 203, 204, 216]        |
| Subjective wellbeing       | 13 | [24, 155, 157, 158, 161, 164, 165, 172,   |
|                            |    | 184, 195] [169] [177, 198]                |
| Affect                     | 5  | [161, 164, 183, 196] [170]                |
| Restorative effect         | 5  | [156, 162, 163, 188, 197]                 |
| Severity mental disorder   | 5  | [161] [182, 192, 193, 199]                |
| Prevalence mental disorder | 5  | [181] [186, 187, 190, 200]                |
| Perceived stress           | 4  | [161, 164, 172] [176]                     |
| Satisfaction with life     | 4  | [159, 164, 175] [175]                     |
| Quality of life            | 4  | [72] [160, 167, 199]                      |
| Behavioural problems       | 3  | [180] [166, 173]                          |
| Self-image                 | 1  | [36]                                      |
| Physiological stress       | 1  | [180]                                     |
| Sleep quality              | 1  | [191]                                     |
| Suicide rate               | 1  | [201]                                     |
| Vitality                   | 1  | [202]                                     |

#### Comparison

A total of thirty-five cross-sectional studies compared one or more green space types or green space characteristics, see Table x. They were conducted in fourteen different countries. United Kingdom had the highest share of studies (thirteen), followed by the United States of America with four studies and Sweden and Australia both with three studies. Two studies were contributed by Singapore and Mexico. The remaining countries were represented by one study, see Table 23.

Most studies in the comparison either focused on characteristics or included multiple green space types in their analyses and comparisons are (indirectly) made by comparing the separate effects of the different green space types and their direction and sometimes magnitude (positive / negative / non-significant). Some studies also included different indices for the same green space type, such as different buffer sizes (e.g., 100 meters versus 500 meters around the residence) or different characteristics of green space patches (e.g., edge contrast, patch area).

One study included a clinical sample [181], whereas all other studies included participants from a healthy, or general, population. Sixteen studies had national residents as their participants (mostly in panel studies), six studies sampled green space visitors, whereas two studies each focused on hikers / athletes, urban residents, schoolchildren, and local residents. All other population types were included in single studies see Table x.

|                      | #  | Paper(s)                                   |
|----------------------|----|--------------------------------------------|
| Country              |    |                                            |
| Country              | 10 |                                            |
| UK                   | 13 | [2, 3, 8, 10, 22, 32-34, 45][184, 196-198] |
| USA                  | 4  | [158, 169, 179, 181]                       |
| Sweden               | 3  | [202-204]                                  |
| Australia            | 3  | [165, 171, 195]                            |
| Singapore            | 2  | [164, 167]                                 |
| Mexico               | 2  | [168, 175]                                 |
| China                | 1  | [157]                                      |
| Iran                 | 1  | [36]                                       |
| Canada               | 1  | [72]                                       |
| Germany              | 1  | [159]                                      |
| Belgium              | 1  | [180]                                      |
| Switzerland          | 1  | [172]                                      |
| Finland              | 1  | [199]                                      |
| Italy                | 1  | [188]                                      |
| Population           |    |                                            |
| National residents   | 16 | [24, 156, 159, 163, 167-169, 171, 175,     |
|                      |    | 179, 180, 183, 185, 202, 204]              |
| Green space visitors | 6  | [157, 172, 188, 196-198]                   |
| Hikers / athletes    | 2  | [24, 161]                                  |
| Urban residents      | 2  | [155, 195]                                 |
| Schoolchildren       | 2  | [72, 181]                                  |
| Local residents      | 2  | [158, 165]                                 |
| Students             | 1  | [164]                                      |
| Adolescents          | 1  | [36]                                       |
| Employees            | 1  | [184]                                      |
|                      | 1  | [203]                                      |
| Rural residents      | ±  |                                            |

Table 23. Summary for country and population of studies with a comparison for the cross-sectionalstudies

Thirteen different health outcomes were studied (see Table x). Subjective wellbeing received most attention, in twelve studies, followed by mental health with seven studies, and affect and restorative effect each with four studies. Three studies focused on perceived stress, satisfaction with life, and the severity of a mental disorder, whereas quality of life was targeted in two studies. All other outcomes were included in single studies, see Table 24.

Most studies (nineteen) looked at either the residential area [72, 156, 158, 159, 164, 165, 167-169, 171, 175, 179, 180, 185, 195, 199, 202-204] or at green space visits (eleven) [36, 155, 157, 163, 172, 175, 188, 196-198]. Two studies looked at an environment for physical activity [24, 161]. Single studies looked at the school environment [181], work environment [184], and all places visited [183].

Twenty-eight studies had a cross-sectional design, six studies used a longitudinal design [72, 165, 183, 185, 202, 204], and one study contained both a cross-sectional and a longitudinal design [180].

| Ħ  | Paper(s)                                                       |
|----|----------------------------------------------------------------|
|    |                                                                |
| 12 | [24, 155, 157, 158, 161, 164, 165, 169,                        |
|    | 172, 184, 195, 198]                                            |
| 7  | [24, 167, 171, 179, 185, 203, 204]                             |
| 4  | [161, 164, 183, 196]                                           |
| 4  | [156, 163, 188, 197]                                           |
| 3  | [161, 164, 172]                                                |
| 3  | [159, 164, 175]                                                |
| 3  | [161, 168, 199]                                                |
| 2  | [72, 155]                                                      |
| 1  | [36]                                                           |
| 1  | [181]                                                          |
| 1  | [180]                                                          |
| 1  | [180]                                                          |
| 1  | [202]                                                          |
|    | 12<br>7<br>4<br>4<br>3<br>3<br>3<br>2<br>1<br>1<br>1<br>1<br>1 |

#

#### Table 24. Summary for health outcomes studies with a comparison for the cross-sectional studies

Danar(c)

## Urban Green Space

Eleven cross-sectional papers investigated the effects of urban green space from six different countries, see Table 25. The majority of these studies were conducted in Europe (seven out of eleven), with most studies (four) conducted in the United Kingdom, the other European studies were conducted in the Netherlands, Germany, and Finland. Outside Europe, three studies were conducted in the United States of America, and one in China.

Most studies investigated green space types; only two studies looked at characteristics of green space [154, 160]. The majority of the studies used a general population; only one study [181] included a clinical sample. Seven different samples were included in the urban green space category. Three studies included national residents, whereas urban residents and local residents were both sampled in two studies. Two studies looked at the effects of urban green space on school children. Patients with a mental disorder, green space visitors, and walkers / athletes were recruited in single studies.

Effects of green space on nine health outcomes were investigated. Again, subjective wellbeing received the most attention, in four studies. Three studies investigated restorative effect, whereas satisfaction with life, quality of life, affect, severity of a mental disorder, perceived stress, mental health, and prevalence of a mental disorder were all targeted in a single study.

Six studies focused on the residential area [154, 156, 158-160, 163], green space visits were investigated twice [155, 157], whereas school environment [181], physical exercise environment [161], and favourite places [162] were all included once. All studies had a cross-sectional design.

|                            | # | Paper(s)                 |
|----------------------------|---|--------------------------|
| Country                    |   |                          |
| UK                         | 4 | [155, 156, 161, 163]     |
| USA                        | 3 | [158, 160, 181]          |
| The Netherlands            | 1 | [158, 100, 181]<br>[154] |
| Germany                    | 1 | [154]                    |
| Finland                    | 1 | [159]                    |
| China                      | 1 | [152]                    |
| Clillia                    | T | [137]                    |
| Population                 |   |                          |
| National residents         | 3 | [156, 159, 163]          |
| Urban residents            | 2 | [154, 155]               |
| Local residents            | 2 | [158, 162]               |
| Schoolchildren             | 2 | [160, 181]               |
| Patients (mental disorder) | 1 | [181]                    |
| Green space visitors       | 1 | [157]                    |
| Walkers / athletes         | 1 | [161]                    |
| Health outcome             |   |                          |
| Subjective wellbeing       | 4 | [155, 157, 158, 161]     |
| Restorative effect         | 3 | [156, 162, 163]          |
| Quality of life            | 2 | [155, 217]               |
| Satisfaction with life     | 1 | [159]                    |
| Affect                     | 1 | [161]                    |
| Severity mental disorder   | 1 | [161]                    |
| Perceived stress           | 1 | [161]                    |
| Mental health              | 1 | [154]                    |
| Prevalence mental disorder | 1 | [181]                    |

## Table 25. Summary for studies included in the urban green space category of the cross-sectional studies

#### Park

Seventeen cross-sectional studies were included from ten different countries, see Table 26. Three studies were conducted in Singapore and Australia, followed by China, the United States of America, and Mexico with two studies. One study was conducted in Iran and Canada. Relatively few studies (three out of eleven) were conducted in Europe; one in Lithuania, one in Switzerland, and one in the United Kingdom.

Sixteen studies investigated effects of the green space type park. Five studies also investigated the effects of park characteristics, including: park qualities [168], amenities [167, 169], park functions [165], and park attractiveness [171]. One study only looked at different characteristics of a park, such as bird song and biodiversity [175].

All studies except one focused on a general population, with the exception being a study looking at an atrisk population [173]. Eight different population types were included in the studies. National residents were included in most (six studies), followed by school children and green space visitors, both with three studies. Adolescents participated in two studies, and single studies included students, local residents, elderly, and young mothers.

|                          | # | Paper(s)                      |
|--------------------------|---|-------------------------------|
| Country                  |   |                               |
| Singapore                | 3 | [164, 170, 174]               |
| Australia                | 3 | [165, 171, 176]               |
| China                    | 2 | [157, 167]                    |
| United States of America | 2 | [169, 173]                    |
| Mexico                   | 2 | [168, 175]                    |
| Canada                   | 1 | [72]                          |
| Iran                     | 1 | [36]                          |
| Lithuania                | 1 | [166]                         |
| Switzerland              | 1 | [172]                         |
| United Kingdom           | 1 | [24]                          |
| 0                        |   |                               |
| Population               |   |                               |
| National residents       | 7 | [24, 168, 169, 171, 174, 175] |
| School children          | 3 | [72, 170, 173]                |
| Green space visitors     | 3 | [157, 172, 176]               |
| Adolescents              | 2 | [36, 170]                     |
| Students                 | 1 | [164]                         |
| Local residents          | 1 | [165]                         |
| Elderly                  | 1 | [167]                         |
| Young mothers            | 1 | [166]                         |
|                          |   |                               |
| Health outcome           |   |                               |
| Subjective wellbeing     | 6 | [24, 157, 164, 165, 169, 172] |
| Mental health            | 4 | [24, 171, 174, 176]           |
| Perceived stress         | 3 | [164, 172, 176]               |
| Affect                   | 2 | [164, 170]                    |
| Quality of life          | 2 | [72, 167]                     |
| Problem behaviour        | 2 | [166, 173]                    |
| Satisfaction with life   | 2 | [164, 175]                    |
| Severity mental disorder | 2 | [168]                         |
| Social contacts          | 1 | [36]                          |
| Self-image               | 1 | [36]                          |

#### Table 26. Summary for studies included in the park category for the cross-sectional studies

Effects of park environments on ten different health outcomes were investigated. Six studies focused on subjective wellbeing, four on mental health, three on perceived stress, and two studies on affect, quality of life, satisfaction with life, problem behaviour, and the severity of a mental disorder. Social contacts and self-image were the outcomes of a single study.

The majority of studies (eleven) focused on the residential area [72, 164-169, 171, 173, 174, 182]. The remaining studies were aimed at visiting / visitors green space (five studies) [36, 157, 172, 175, 176], and single studies looked at all places visited [170], physical exercise environments [24], and school environments [173].

Again, most studies had a cross-sectional design and only five studies a longitudinal [72, 165, 166, 170, 173]

## Garden

Three studies looked at cross-sectional benefits of gardens, two in the United Kingdom [24, 177] and one in Iran [36].

All three studies investigated the effects of the garden as a green space type, whereas one study also looked at the characteristics of the garden, namely of view characteristics [177]. All three studies included a general population, and specifically: adolescents [36], national residents [24], and the elderly [177].

Two studies had subjective wellbeing as mental health outcome [24, 177], whereas self-image and social contacts was in focus in the third [36]. The three studies all looked at a different assessment area; visiting / visitors of green space [36], a physical activity environment [24], and the residential area [177].

# Forest / Woodland

Twelve cross-sectional papers examined the effects of forest and woodland on mental health in seven different countries, see Table 27. The majority of studies were conducted in Europe (seven out of twelve), out of which five studies were conducted in the United Kingdom, and one study in Switzerland, Belgium, and Germany. Outside Europe, two studies were conducted in the United States of America, one in Iran, and one in Korea.

All studies investigated effects of forest as a green space type, and one study looked at characteristics of patches of forest in addition to that [179].

One study included a clinical population, namely children with autism [181], whereas all other studies focused on the general population. Six different population types were included. The majority of studies had national residents as respondents (eight studies), and single studies included: green space visitors, adolescents, school children, patients mental disorder, and employees.

Mental health outcomes where highly scattered with eleven different outcomes. Most outcomes were only included once in a study; satisfaction with life, physiological stress, problem behaviour, restorative effect, prevalence mental disorder, self-image, and social contacts. Two studies focused on subjective wellbeing and affect, and three studies on mental health.

Six studies were conducted within the residential area [159, 163, 179, 180, 182] [185] and two for green space visitors [159] [36]. Single studies were conducted in the school environment [181], work environment [184], physical activity environment [24], and all places visited [183].

Again, most studies had a cross-sectional design. Two studies combined a cross-sectional design with a longitudinal design [180] [185] and one study had a longitudinal design [183].



|                            | # | Paper(s)                                |
|----------------------------|---|-----------------------------------------|
| Country                    |   |                                         |
| United Kingdom             | 5 | [24, 163, 183-185]                      |
| United States of America   | 2 | [179, 181]                              |
| Switzerland                | 1 | [172]                                   |
| Belgium                    | 1 | [180]                                   |
| Germany                    | 1 | [159]                                   |
| Iran                       | 1 | [36]                                    |
| Korea                      | 1 | [182]                                   |
| Population                 |   |                                         |
| National residents         | 8 | [24, 159, 163, 179, 180, 182, 183, 185] |
| Green space visitors       | 1 | [172]                                   |
| Adolescents                | 1 | [36]                                    |
| School children            | 1 | [181]                                   |
| Patient mental disorder    | 1 | [181]                                   |
| Employees                  | 1 | [184]                                   |
| Health outcome             |   |                                         |
| Mental health              | 3 | [24, 179, 185]                          |
| Subjective wellbeing       | 2 | [24, 184]                               |
| Affect                     | 2 | [180, 183]                              |
| Perceived stress           | 1 | [172]                                   |
| Social contacts            | 1 | [36]                                    |
| Self-image                 | 1 | [36]                                    |
| Prevalance mental disorder | 1 | [181]                                   |
| Restorative effect         | 1 | [163]                                   |
| Problem behaviour          | 1 | [180]                                   |
| Physiological stress       | 1 | [180]                                   |
| Satisfaction with life     | 1 | [159]                                   |
| Severity mental disorder   | 1 | [182]                                   |

## Table 27. Summary for studies included in the forest / woodland category for the cross-sectional studies

#### Grassland and Meadows

Seven studies from four countries focused on grassland and meadows, with three studies in the United Kingdom [183-185], two in the United States of America [158, 181] and one in Australia [186] and Canada [72].

All studies looked at grassland and meadows as a specific green space type and none of the studies looked further at characteristics of this specific green space type. One study had a clinical population [181], the other five studies sampled from the general population. Six different population types were included:

national residents (2 studies) [183, 185], urban residents [186], local residents [158], employees [184], and school children [72, 181] and patients with a mental disorder [181].

Six different health outcomes were the focus of the seven studies. Two studies targeted subjective wellbeing [158, 184], while the other outcomes were quality of life [72], affect [183], prevalence mental disorder [181], severity of mental disorder [186], and mental health [185].

Again, the majority of studies investigated the residential area [72, 158, 185, 186], whereas single studies looked at the work environment [184], school environment [181], and all places visited [183].

Three studies had a longitudinal design [72, 183, 186] and one study combined a longitudinal and a cross-sectional design [185]. The remaining three studies had a cross-sectional design.

## Trees and other plants

Sixteen studies investigated effects of trees and / or plants in seven different countries, see Table 28. This green space category was dominated by research from the United States of America, with eight studies. Two studies came from Bulgaria and the remaining six studies were from; Australia, United Kingdom, Italy, Singapore, Canada, and Mexico.

Again, most studies investigated Trees and other plants as a specific type. Two studies looked at characteristics of trees; stand density and tree size [175, 188], and one study looked at patch characteristics of different types of vegetation [179].

The majority of studies, once more, included general participants. Three studies focused on a clinical population [181, 190, 193] and one on an at-risk population [173]. Eight different population types were included: national residents (eight studies), schoolchildren (four studies), students (two studies), patients with a mental disorder (two studies), and elderly, urban residents, green space visitors, and employees with one study each.

Nine different health outcomes were the dependent variables. The largest focus was on mental health, with six studies, followed by the severity of a mental disorder with three studies and the prevalence of mental disorders with two studies. Single studies targeted sleep quality, problem behaviour, subjective wellbeing, restorative effect, quality of life, satisfaction with life.

The residential area was again the most often-used area of assessment with eleven studies [72, 174, 179, 186, 187, 189, 191-194, 216]. Green space visits [173, 175] and school environment [181, 188] were investigated twice , whereas healthcare environment [190] and a work environment [184] both were assessed in single studies.

Five of the sixteen studies had a longitudinal design [72, 173, 186, 190, 191].



|                                     | #      | Paper(s)                                                        |
|-------------------------------------|--------|-----------------------------------------------------------------|
| Country                             |        |                                                                 |
| Country<br>United States of America | 8      | [173, 179, 181, 189-193]                                        |
|                                     | °<br>2 | [173, 179, 181, 189-193]<br>[194, 216]                          |
| Bulgaria<br>Australia               | 2      | [194, 216]<br>[186]                                             |
| United Kingdom                      | 1      | [180]                                                           |
| •                                   | 1      |                                                                 |
| Italy                               | 1      | [188]                                                           |
| Singapore<br>Canada                 | 1      | [174]                                                           |
| Mexico                              | 1      | [72]                                                            |
| Mexico                              | T      | [175]                                                           |
| Population                          |        |                                                                 |
| National residents                  | 8      | [174, 175, 179, 187, 189, 191, 192]                             |
| Schoolchildren                      | о<br>4 | [174, 173, 173, 187, 187, 189, 191, 192]<br>[72, 173, 181, 193] |
| students                            | 4      | [194, 216]                                                      |
| Patients mental disorder            | 2      | [194, 210]                                                      |
| Elderly                             | 1      |                                                                 |
| Urban residents                     | 1      | [190]<br>[186]                                                  |
| Employees                           | 1      | [180]                                                           |
|                                     | 1      |                                                                 |
| Green space visitors                | T      | [188]                                                           |
| Health outcome                      |        |                                                                 |
| Mental health                       | 6      | [174, 179, 186, 189, 194, 216]                                  |
| Severity mental disorder            | 3      | [190, 192, 193]                                                 |
| Prevalence mental disorder          | 2      | [181, 187]                                                      |
| Sleep quality                       | 1      | [191]                                                           |
| Problem behaviour                   | 1      | [173]                                                           |
| Subjective wellbeing                | 1      | [184]                                                           |
| Restorative effect                  | 1      | [188]                                                           |
| Quality of life                     | 1      | [72]                                                            |
| Satisfaction with life              | 1      | [175]                                                           |

Table 28. Summary for studies included in the Trees and other plants category for the cross-sectionalstudies

## Other Green Space Types

Ten studies focused on other green space types, including mostly rural green spaces such as fields, distant countryside, nature reserves, rural green, farmland, but also inland bare ground, and green corridors. The studies were conducted in five countries, with the majority of studies conducted in Europe (ten) with most of them from the United Kingdom (eight) [24, 155, 156, 161, 163, 183-185], while the other European countries were Germany [159] and Belgium [180]. The remaining two studies were conducted in Singapore [164], and Iran [36].

All studies focused on a general population within four population types; national residents (seven studies) [24, 156, 159, 163, 180, 183, 185], employees [184], students [164], urban residents [155], and walkers [161].

Eight different health outcomes were investigated, namely: subjective wellbeing (five studies) [24, 155, 161, 164, 184], affect (four studies) [161, 164, 180, 183], perceived stress (2 studies) [161, 164], satisfaction with life (2 studies) [159, 164], restorative effect (two studies) [156, 163], severity of mental disorder [161], quality of life [155], problem behaviour [180], mental health [185].

Five studies focused on the residential area [156, 159, 164, 180, 185], two studies on green space visits [155, 163] and a physical exercise environment [24, 161]. Single studies looked at all places visited [183] and the work environment [184]

Three of the ten studies had a longitudinal design [180, 183, 185].

## Biodiversity

Five studies in three countries looked at differences in biodiversity level on mental health. Three of these studies were conducted in the United Kingdom [196-198], whereas the other two took place in Australia [195] and Finland [199].

All studies focused on the general population, with three different population types included: green space visitors [196-198], urban residents [195], and the elderly [199].

The studies covered five different health outcomes; subjective wellbeing [195, 198], affect [196], restorative effect [197], quality of life [199], and severity mental disorder [199].

The studies included either the residential area [195, 199], or green space visits [196-198] and all studies had a cross-sectional design.

## Other Green Space Characteristics

Six studies in two countries looked at other green space characteristics. Two studies from Australia [200, 201] looked at dryland salinity, whereas three studies from Sweden [202-204] investigated effects of a specific characterisation of green space types (in e.g., 'lush', 'wild', 'serene' nature) on mental wellbeing.

One study included a clinical sample [201], whereas the other four all included a general population. Four different population types were recruited across the four studies; national residents [156, 202, 204], urban residents [203], rural residents [200], and patients mental disorder [201].

Four different health outcomes were investigated; mental health [203, 204], vitality [202], suicide rate [201], prevalence mental disorder [200].

All studies focused on the residential area and three of the studies had a longitudinal design [201, 202, 204].



# Qualitative

#### Overall

A total of eleven studies were included (see Table 29), in six different categories: park (2) [176, 205]; garden (4) [205-209]; forest (4) [127, 210-212]; Trees and other plants (1) [197]; other green space type (1) [205]; other green space characteristic [213].

The studies were conducted in eight different countries, three studies were performed in the UK and two in Australia, whereas all other countries contributed with a single study: the USA, Canada, Sweden, Denmark, Iran, and Malaysia.

Four studies included a clinical population [127, 206, 207, 210, 212], and six different population types were included. Five studies focused on green space visitors, four studies were on patients with a mental disorder, and three included the elderly. Single studies looked at patients with a physical disorder and women.

Four different types of mental health outcomes were investigated. Four studies had subjective wellbeing as the outcome measure and three restorative effects, whereas mental health and affect were the focus of two studies each.

| # | Paper(s)                                                                                                        |
|---|-----------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                 |
|   |                                                                                                                 |
| 3 | [197, 210, 212]                                                                                                 |
| 2 | [127, 176, 208]                                                                                                 |
| 1 | [206]                                                                                                           |
| 1 | [205]                                                                                                           |
| 1 | [207]                                                                                                           |
| 1 | [213]                                                                                                           |
| 1 | [209]                                                                                                           |
| 1 | [211]                                                                                                           |
|   |                                                                                                                 |
|   |                                                                                                                 |
| 5 | [176, 197, 208, 209, 211, 212]                                                                                  |
| 4 | [127, 206, 207, 210]                                                                                            |
| 3 | [127, 206, 210]                                                                                                 |
| 1 | [205]                                                                                                           |
| 1 | [212]                                                                                                           |
| 1 | [213]                                                                                                           |
|   |                                                                                                                 |
|   |                                                                                                                 |
| 4 | [206, 209, 210, 212]                                                                                            |
| 3 | [197, 208, 211, 213]                                                                                            |
| 2 | [176, 205]                                                                                                      |
| 2 | [127, 207]                                                                                                      |
|   | 3<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>4<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2 |

## Table 29. Summary for the included qualitative studies

The majority of studies (eight) focused on a visit to a green space [176, 197, 205, 208-213], two studies focused on a healthcare environment [206, 207], and one on viewing green space [127].

## Park

Two studies focused on the experiences in parks. One study was conducted in Australia [176], with green space visitors and the second was conducted in Canada [205] off site with students. Both studies used a general population, had mental health as an outcome variable, and investigated a visit to a green space.

## Garden

Three studies investigated the effects of a garden. One study from the USA included gardens at dementia facilities [206] and the study from Sweden investigated experiences with a rehabilitation garden [207]. Both studies included a clinical population of patients with a mental disorder and had a healthcare environment as environmental assessment area. The health outcomes were subjective wellbeing and affect, respectively.

The other two studies employed a heathy population and were conducted in a historical Persian garden in Iran [209] and gardens in general in Canada [205]. The population types studied were green space visitors [208, 209] and students [205]. The studies focused on subjective wellbeing [209] and mental health [205]. Both studied a visit to a green environment.

## Forest

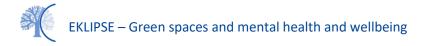
In four studies the forest was the focal point. Two studies were conducted in the UK [210, 212], one in Australia [127], and one in Malaysia [211].

Two studies focused on a clinical population [127, 210], one study included both a clinical and a general population [212], and one study included a general population [211]. Two studies focused on elderly dementia patients [127, 210], two studies on green space visitors [211, 212], and one also included patients with a physical disorder [212].

Three different health outcomes were studied; subjective wellbeing [210, 212], affect [127], and restorative effect [211].

Three studies investigated a visit to a green environment [210-212], and in one study it was viewing a green space [127]. This latter study also used an indirect green space manipulation (Virtual Reality).

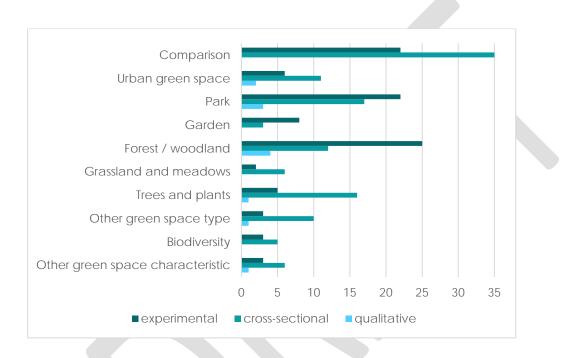
# Trees and other plants


One study from the UK focused on Trees and other plants, by comparing effects of plants and bushes in full bloom (spring) versus only green (summer) [197]. See Table x for further the details.

## Other green space type

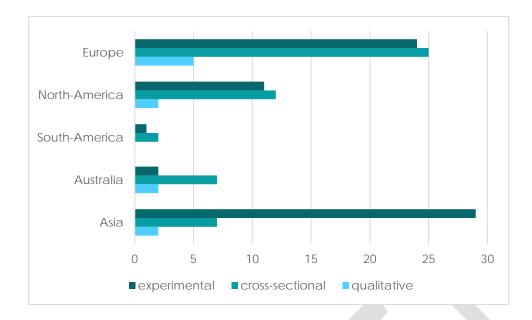
One study from Canada included, besides gardens and parks also local trails and conservation areas [205]. See Table x for further the details.

## Other green space characteristic


One study from Denmark looked at the relevance of general natural features for restoration outcomes [213]. See Table x for further the details.

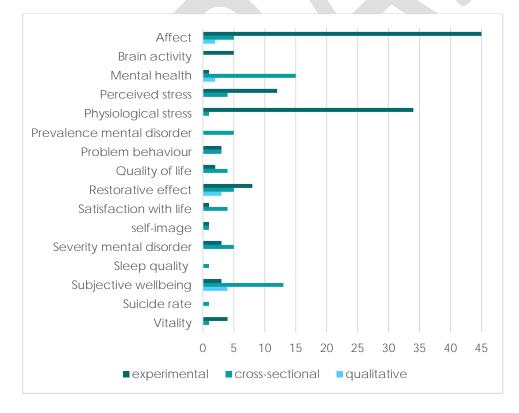


# Overview experimental, cross-sectional, and qualitative studies


The previous sections have focused on the three study types (experimental, cross-sectional, qualitative) separately. In this section, the outcomes of the three study types will be brought together and compared in terms of composition, land of origin, composition, and outcome.

First, Figure 6 shows how the different green space categories are distributed among the study types. The cross-sectional studies had most studies that enabled comparison, followed by the experimental category, whereas none of the qualitative studies enabled comparison. All three study types had a large focus on the park and the forest, while the cross-sectional studies also included a relatively high number of studies on Trees and other plants and urban green space.

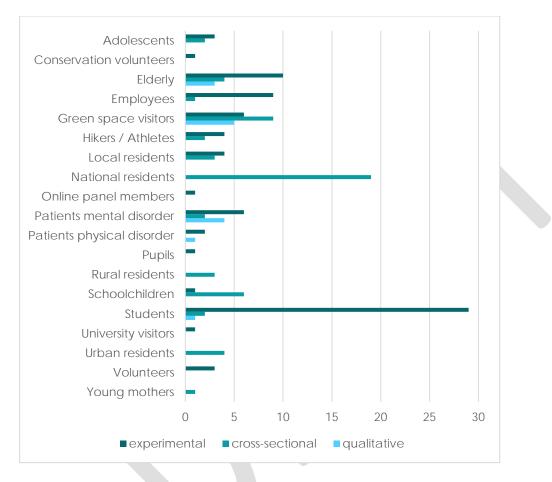



#### Figure 6. Overview of the green space categories division across the three study types

Most studies in the cross-sectional and qualitative category came from Europe, whereas most studies in the experimental category were conducted in Asia, followed by Europe. A relatively high number of studies from Australia were in the cross-sectional category, see Figure 7.



## Figure 7. Overview of division of the three study types across continents


With regards to the mental health outcomes that were studied, there was a clear focus of the experimental studies on affect and physiological stress. The cross-sectional studies were more heterogenous in terms of mental health outcome, but most studies focused on mental health and subjective wellbeing. Perhaps logically, the experimental studies focused most on momentary measures of mental health, whereas the cross-sectional studies included more long-term effects of exposure to green, see Figure 8. The qualitative studies focused more on subjective wellbeing followed by restorative effect, affect and mental health.





#### Figure 8. Overview of the health outcomes studied across the three study types

The majority of the experimental studies included a convenience sample; students, whereas many of the cross-sectional studies included nationwide sampling of respondents. The qualitative studies, on the other hand focused mainly on green space visitors. Green space visitors were also sampled frequently in the quantitative study types, the elderly and employees for the experimental studies, and schoolchildren in the cross-sectional studies (Figure 9).



#### Figure 9. Overview of the population types included in the three study types

When looking at the environmental assessment area (i.e., the environment on which the study focused), there were again two categories that stood out. For the experimental and qualitative studies, this was the green space visited whereas a large majority of the cross-sectional studies focused on the residential area. Viewing green space received some attention in the experimental studies, whereas a green space visit was the second largest area of interest in the cross-sectional category. All other assessment areas were focused on infrequently, see Figure 10.

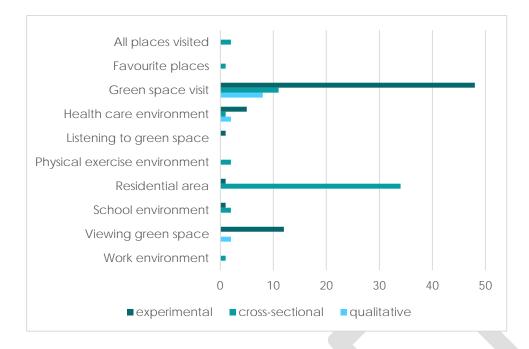
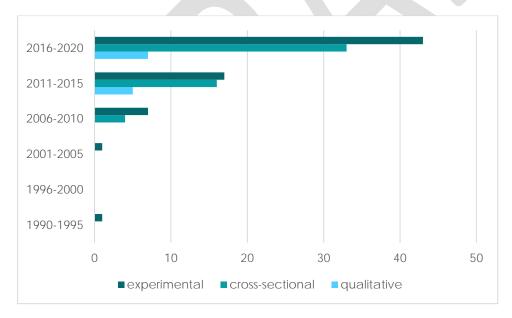




Figure 10. Overview of the division of the environmental assessment area across the three study types

The timeline of the included papers is displayed in Figure 11, which shows that most papers in all categories were from the last 5 years and, in addition, there is a steady increase in relevant papers over the past two decades.



## Figure 11. Timeline of the included papers across the three study types



## **Narrative synthesis**

For the two quantitative (experimental and qualitative) categories, studies comparing different green space types and / or characteristics, either directly or indirectly are most informative and will therefore be discussed in the beginning of each section.

## **Experimental**

The experimental sections will start with discussing the studies that enabled a comparison, either directly or indirectly. After that, studies focusing on green space characteristics will be discussed, followed by studies looking at pre- and post-measurements of a single green space type and studies that compare effects of green space types with urban (built-up) areas.

#### Urban green space

Nine studies enabled a comparison. Two studies compared effects of urban green space with those of another green space type. The first study, conducted in the UK and of moderate quality, used a pre-post design to compare the effects of a visit to three different types of urban green space for conservation volunteers [90]. The results pointed at lower perceived stress for the community green space, characterized by a mix of forest and grassland than for two other green areas; one with a mosaic of fenland, meadow, and woodland and the other one with a large green field surrounding woodland near semi-urban housing. Positive affect increased the same for all three locations. A second study conducted in Italy and also of moderate quality compared restorative outcomes for visitors of urban versus peri-urban green spaces with high versus low biodiversity [92]. This study reported better restorative outcomes for visitors of peri-urban green spaces (pinewood forest and protected reserve) than for those visiting urban green spaces (urban square and park). High biodiversity (urban park and protected reserve) also scored better than the areas with low biodiversity (urban square and pinewood forest). Longer visits resulted in better outcomes. The authors also looked at the types of activities visitors were engaging in and how this affected restorative outcomes. Better outcomes were found for those that were contemplating the setting or walking / exercising than for those who were reading, talking, or socializing in the green space. One additional study looked at the characteristics of urban green space. This study from Japan and of moderate quality found better mood outcomes (less fatigue, anxiety-hostility, total mood disturbance) under the tree canopy than in sunny areas on campus [91].

Urban green space was investigated in three further studies. One relatively good quality study from Finland found that employees who went for a walk in nearby urban green space during lunchtime experienced less strain in the afternoons after the walk, whereas fatigue remained unaffected [87]. A similar effect was found when doing relaxation exercises. The other two studies were both from the UK, of moderate quality, and both employed mobile EEG devices to measure brain activity while visiting green spaces. The first study found that EEG-signals related to engagement were stronger for an urban green space than for a busy and quiet urban area, whereas excitement was higher in the busy urban area and frustration was lower in the urban quiet area [88]. The second study pointed at lower frustration, engagement or alertness, and long term excitement in an urban green space than in a busy urban area, whereas meditation was higher in the green urban area than in the busy urban area [89].

#### Park

Eight studies compared mental health effects of a park with another green space type. Six studies compared the park with the forest [103, 104, 111-114]. A visit to the park was compared in five of the six studies and all five studies found superior effects of the forest over the park for some (but not all) of the indicators [103, 111-114]. An urban park and an urban forest were compared in three of these studies, all conducted in Finland with employees as participants with two studies of moderate quality [111, 112] and one study of relatively good quality [113]. A first study found no difference between the two environments on restorative effect or vitality, but found less negative emotions in the park than in the forest [111]. A second study found better restorative outcomes and vitality after walking in the forest than after walking in the park [112]. The third study focused on physiological stress and found no difference in heart rate or blood pressure, but a better heart rate variability in the forest than in the park [113]. A fourth study, conducted in the USA and of moderate quality, found better outcomes for cortisol and joy for visitors of the forest than for visitors of the park and no difference on perceived stress between the two environments [114]. In the fifth study, conducted in Austria, pupils were taken on lunch breaks in one of three environments; a busy, small urban park with few trees; a larger park with clusters of trees; and a larger broadleaved forest with meadows [103]. There was no difference in subjective wellbeing scores when the pupils where in the different environments, but there was a smaller decline in subjective wellbeing after return to the classroom for the forest than for the parks. No difference in subjective wellbeing was found between the two different parks. The sixth study of moderate quality from Australia compared the effects of viewing a video of an urban park with viewing a video of a wild forest and found no difference between the two environments on negative affect, whereas more positive affect was reported when viewing the wild forest than the urban park [104].

Two other studies compared an urban park with a wilderness type setting in the USA [93], and the park with a footpath along a canal [98] in the UK. Both studies were of moderate quality. No difference was found on affect between walking in the park or walking along the canal [98], whereas the wilderness scored better on physiological stress and affect than the park [93]. The wilderness and the park both resulted in a (similar) decrease in perceived stress.

Characteristics of the park were investigated in three studies, all of moderate quality. A Chinese study compared responses of students to videos of urban parks differing in openness, and also compared to an urban road [100]. This study indicated that skin conductance reduced when viewing a lawn (with and without people), a small lake, and a walkway, indicating lower stress levels. Heart rate was lower (again related to lower stress) after viewing a small lake and a walkway, but not for the lawn. There was no effect on skin conductance or heart rate for a plaza or an urban roadway. A second Chinese study investigated effects of the greenness of the park, the soundscape of the park, and the visibility of the sky [105] on affect. This study revealed no effect of greenness of the park or sky visibility on affect, whereas acoustic comfort was positively related with positive affect, relaxation, and energy. The third study, from the USA, used an (indirect) representation of a park at night, manipulated on the level of light pollution and found that students reported better affect when they viewed parks with lower light pollution [106].

Time spent in the park was the main focus in 3 studies of moderate quality, all conducted in the USA [94, 95, 101]. All three studies found a positive effect of time spent in the park on some indicators of mental

health, whereas one study also found a negative relation [95]. A first study, among the elderly, found that people with higher stress levels stayed longer in the park than those with lower stress levels [94]. Longer stays were also related with lower blood pressure. No effects were found for visit frequency and stress levels and mental health. A second study looked at the relation between time spent in the park and affect, and found that longer stays were associated with lower anxiety, but also with more tiredness [95]. The effects on anxiety were more pronounced for high-stress individuals. No effects were found on relaxation or energy. The third study found that positive affect and satisfaction with life were higher after the park visit and that longer visits to the park were related to a higher satisfaction with life [101].

The remainder of the studies (six) compared the park with an urban (built-up) area. All reported at least one positive effect [97, 99, 107-109, 182], and were of moderate quality. One research group in Japan contributed four studies, all with a focus on affect and physiological stress and with students (only males or only females) as participants [107-109, 182]. These studies all found positive affect of a visit to the park compared to an urban area on affect, anxiety, and physiological stress (heart rate, heart rate variability). One study reported no effect on the mood sub-scale depression [109], and one study found no differences in blood pressure and pulse rate [182]. A study from Lithuania among patients with a coronary artery disease found that affect improved and cortisol and blood pressure decreased after the park visit, but not after the visit to the urban area [97]. A study from tropical Malaysia among students also reported beneficial effects of the park, with lower cortisol levels and blood pressure and better mood after the park visit than after the visit to the urban area [99].

Two studies of moderate quality compared pre-and post-measurements for a visit to the park and both reported positive effects of a park visit [96, 102]. In France, affect was better for those that participated after the park visit than for those that were asked before the park visit [102]. A study from China with elderly participants reported beneficial effects on anxiety, depression, contentment, and relaxation with more pronounced effects for the active park lingerers than for walkers [96].

#### Garden

Two studies compared different types of public gardens [118, 122], both studies were of moderate quality. One study from China compared a Japanese garden with an unstructured garden and found increases in physiological stress when viewing the unstructured garden in terms of heart rate and skin conductance but not for heart rate variability [218]. The second study, from Canada compared three different garden styles; botanical garden, Japanese garden, and architectural garden. No difference in physiological stress were found between the three gardens but affect was generally better for the Japanese garden than for the other two gardens [122].

Four studies were conducted in a healthcare environment, three studies in a (closed) dementia ward [115-117, 121] and one study focused on a hospital garden. Three studies were conducted in the USA [115-117], one study was conducted in Japan [121] and one of these studies was of relatively good quality [115]. This latter study found that dosage levels for primary antidepressants increased whereas antipsychotic medication prescription decreased for dementia patients after implementing a wander garden. On the other hand, it was found that the secondary antidepressant dosages (patients requiring a second medicine against depression) decreased. High users of the wander garden needed less antidepressant medication and also less antipsychotic medication than low users. A second study from this research group [116] also reported lower medication use after the implementation of a wander garden, as well as lower levels of perceived agitation. On the other hand, an increase in incidents involving personal harm was reported after the implementation. A third study using dementia patients compared a Japanese with a non-Japanese garden and found lower pulse rates after installing the Japanese garden and more positive comments about behaviour after installing both gardens [121]. The fourth study, focusing on lunchbreaks for nurses, found that going outdoors in the garden resulted in better scores on two of the three indicators of burnout (emotional exhaustion and depersonalization, not on personal accomplishment), and positive effects were found on affect but only when the lowest 10 % of the scores were taken out of the analysis [117].

One study from Korea of relatively good quality compared viewing pictures of a traditional Korean garden versus an urban environment [119]. The images of the garden scored better on affect and anxiety than the urban images, whereas no difference was found on vigour. There were also differences in brain activity, with lower activation in the prefrontal cortex when viewing the garden images.

The last study was conducted in Peru and of moderate quality, comparing participants that did versus did not create a garden. Those that had created a garden had lower perceived stress after six and twelve months after the garden creation and reported a higher quality of life twelve months after garden creation. No effect was found on blood pressure.

## Forest and woodlands

In the park section, six studies have already been reported in which the forest was compared to the park [103, 104, 111-114]. In general, the forest scored better on mental health outcomes than the park in these studies. One further study compared forests with a different green space type; visits to two types of forest (forest by the lake and spruce forest) were compared to a visit to rock outcrop for persons suffering from exhaustion disorder in a Swedish study of moderate quality [137]. A visit to the forest by the lake resulted in a lower heart rate than a visit to a spruce forest or to a rock outcrop, whereas both forest environments scored better on blood pressure than the rock outcrop.

Three studies investigated specific characteristics of the forest [130, 131, 139], of which two were of relatively good quality [131, 139]. One study of moderate quality from Switzerland compared a visit to a wild versus to a tended forest for students and employees[130]. This study found better effects for the tended than for the wild forest on positive and negative affect, but no difference on arousal or activation. A study in Japan compared a thinned forest with an unthinned forest [131]. No effect on affect was found, but a better restorative effect was reported for the unthinned forest versus the thinned forest. A Taiwanese study among students tested effects of viewing images taken at different location within the forest (the interior, the edge, or the exterior) and found that brain activity signalled more relaxation in the interior of the forest than on the edge. Students also reported better mood when the images displayed the interior of the forest than when the images displayed the edge or exterior of the forest [139].

Ten studies compared the forest with an urban (built-up) environment in ten studies [123-125, 128, 129, 133-136, 138]. The majority of these studies were of moderate quality (six) [123, 124, 129, 135, 136, 138], and three of relatively good quality [125, 128, 134]. A visit to the forest versus an urban environment was the focus in eight of these studies, of which six studies looked at affect and physiological stress [123, 124,



128, 129, 134, 136]. All studies were conducted in Asia except one Danish study [136]. This Danish study on people with exhaustion disease found an improvement in affect after the forest walk, but reported no effect on physiological stress (measured with blood pressure and heart rate variability). Quite similar results were reported in the Asian studies for affect; better outcomes in (at least one parameter of) affect in the forest environment as compared to the urban environment was reported in almost all studies [124, 125, 128, 129). Better physiological stress outcomes (on at least one parameter) in the forest than in the urban built-up environments were, however, also reported in all these Asian studies. These effects were found for students {Lee, 2009 #1075, 135] and people with hypertension [134].

Affect was measured with the Profile of Mood States (POMS) scale in six studies [219], this scale is composed of six dimensions; tension / anxiety, anger / hostility, vigour / activity, fatigue / inertia, depression / dejection, confusion / bewilderment. Tension / anxiety was overall lower in the forest than in the urban environment in three studies [125, 134, 135], while one study found no effect [124]. No effects of a forest environment on tension / anxiety or anger / hostility were found in one further study, but this study did report an increase over time in tension / anxiety as well as anger / hostility for the urban environment [128]. Anger / hostility was lower in the forest in three studies [124, 134, 135], whereas another study did not find an effect [125]. Vigour increased and fatigue was lower in the forest in five studies [124, 125, 128, 134, 135]. Depression was lower in the forest in two studies[134, 135], with one study reporting more pronounced effects for people scoring high on anxiety [135], and three studies found no effect of the forest versus an urban environment on depression [124, 125, 128]. The sixth dimension, confusion, was lower in the forest for four studies [125, 128, 134, 135], and no effect was found in one study [124]. One study only reported negative effects over time of the urban environment and no positive effects of the forest on affect [129].

Heart rate was lower in three studies [123, 129, 134] in the forest compared to the urban environment, while heart rate variability improved in two studies [128, 129] and mixed results for heart rate variability (improved for only one of the two indicators) were found in yet another [134]. Diastolic blood pressure was lower in the forest in two studies, whereas no effect was found on systolic blood pressure in the same studies [123, 129] and one study found no effect on blood pressure at all [128]. Cortisol levels were lower in the forest than in the urban environment in one study [123], and another study found no difference in cortisol levels [128]. Brain activity was tested in one study, which revealed greater stability in the prefrontal cortices for the forest than for the urban environment [124].

One of the studies also investigated the role of activity on the beneficial outcomes of a forest visit and included restorative outcomes and vitality as outcome variables [125]. This Japanese study found that better restorative effects occurred and vitality was higher when participants were walking as opposed to viewing the forest. Besides actual visits to a forest versus an urban environment, there was one study that employed a Virtual Reality representation of the forest versus a commercial shopping street [133]. This study revealed no effect on physiological stress (heart rate,  $\alpha$ -amalyse, blood pressure) but less negative affect (anger/hostility, tension, fatigue, confusion, depression) and more vigour in the forest. One study from Japan investigated the sound of a brook in the forest [138] compared to a busy intersection. This study reported better scores for tension / anxiety, anger / hostility, vigour, fatigue, depression and

confusion for the forest sounds. In addition, lower heart rate and better heart rate variability were reported and more activity in the left and right prefrontal cortex.

Effects of the forest were investigated with pre- and post-measurements without a comparison environment in four studies of moderate quality [126, 127, 132, 140]. A visit to the forest was investigated in two studies from Japan [126, 140]. The first study revealed positive effects of the forest visit on affect and anxiety for volunteers [126], but also an increase in boredom in the forest over time. The second study revealed better affect, lower perceived stress, and lower blood pressure after the forest visit [140]. At the same time, Chromogranin A (a marker for mental stress, with higher levels signalling more mental stress) was higher directly after the walk but lower forty minutes after the walk than before the walk. Viewing the forest in videos or in Virtual Reality was the focus in two further studies, from Japan [132] and Australia [127]. A pilot study investigated the effects of viewing a video of the forest (versus the sea) [132] and found that vigour and confusion decreased while watching the forest in Virtual Reality and found that patients employed a forest in Virtual Reality and found that patients expressed more pleasure and alertness, but also more anxiety while viewing the virtual forest. No effects were found on negative affect [127].

## Grassland and meadows

Two of the three studies within the grassland category enabled a comparison, both of moderate quality. The first study, from the UK compared running in different environments; grassland, a heritage park, beach, and the riverside [142]. The study reported better outcomes for self-image, stress level, and affect after the run (as well as an increase in fatigue), but no differences were found between the environments. The second study compared a visit to a managed versus an unmanaged meadow in Austria and Switzerland and found no difference between the two environments on perceived stress or subjective wellbeing [143]. Furthermore, the three meadows were also compared to a riverside and two different urban environments. Heart rate was highest at the river, while the lowest heart rate was found in one of the urban areas and one of the meadows. Perceived stress was lowest and wellbeing was highest at the riverside and for the most remote meadow.

The third study, of relatively good quality, was conducted in the UK and among adolescents and investigated effects of being on a grassy plain outside a building. Heart rate and blood pressure decreased after being on the grass, whereas no effect was found of spending time on the grass on affect (affect was overall better compared to an indoor environment).

# Trees and other plants

Two of the four studies within the trees and other plants category enabled a comparison. A study from Taiwan of relatively good quality compared the effects for tending short-term plants (spinach and lettuce) versus long-term plants (tomato and spring beans) on the quality of life for stroke patients [144]. Tending short-term plants resulted in a better social role than tending long-term plants, which was more pronounced for females. An exact opposite pattern occurred for another component of quality of life; family role. Here, tending long-term plants resulted in better outcomes, and this effect was more pronounced for males. The second study stemmed from Greece and was of moderate quality [145]. The effects of viewing trees or plants during different seasons on patients suffering from psychosis were



investigated using biometric measures were investigated. The time percentage of joy was greater for green shrubs than for flowering shrubs, a green tree, and a tree in autumn foliage. The time percentage of positive emotions was greater for the tree in autumn colour than for the green and flowering shrubs, and the green tree.

The two other studies in this category were both of moderate quality and from Asia, namely China [146] and Japan [147]. In China, the effect of walking on streets surrounded by different types of roadside trees (Sakura, the London plane, Metasequoia) versus a control road with no trees was investigated [146]. The participating students reported better affect (lower tension / anxiety, anger / hostility, fatigue / inertia, depression / dejection, confusion / bewilderment, higher vigour / activity), lower anxiety, and greater vitality on the roads with trees compared to the control road. No differences were found between the three different tree types. Climbing in an artificial tower versus a real tree was tested in the Japanese study [147]. While climbing the tree, vitality was higher and tension, fatigue, and confusion were lower than while climbing the tower. The climbers also reported better restorative outcomes. Physiological measures pointed at higher activation of the autonomic nervous system after climbing the tree, but also a worse heart rate variability while climbing the tree compared to the tower.

#### Other green space type

One study from the USA of relatively good quality looked at green stormwater infrastructure and implemented multiple different interventions at different locations to create green stormwater infrastructure versus a control group (waiting list) [150]. No effects were found of the interventions on high blood pressure or high stress.

#### Biodiversity

Three studies of moderate quality from the UK [148], Italy [92], and Taiwan [149] tested for effects of biodiversity on mental health. No influence was found for elderly participants of perceived bird, butterfly, and plant/tree biodiversity on affect after going for a walk [148]. In Italy, urban and peri-urban areas with higher biodiversity resulted in better restorative outcomes than urban and peri-urban areas with low biodiversity [92]. The Taiwanese study included the biodiversity parameters of richness, abundance, and diversity in a range of different green space types; green urban space, farmland, and mountains [149]. No effect was found on EMG, heart rate, or blood volume pulse, whereas settings with more homogeneity in biodiversity resulted in a lower heart rate.

#### Other green space characteristic

Three studies looked at a diverse set of other green space characteristics [151-153]. A study in Portugal with moderate quality among students and employees investigated the effects of three-dimensional videos of contemplative versus non-contemplative spaces [152], with contemplative being characterised by long vistas, lush seemingly-wild vegetation, presence of symbolic elements, and smooth landforms. No effect was found on prefrontal alpha asymmetry, associated with positive affect. A study among schoolchildren in Sweden investigated the school environment in terms of a number of factors (OPEC: accessibility; proportion containing shrubs, trees, hills; degree of integration between vegetation, open area, and play structures) as well as sky visibility [151]. No effects were found for sky visibility on hyperactivity /

impulsivity or inattention. Higher scores on the OPEC measurement were found related to less inattention. Less hyperactivity / impulsivity was also found for higher scores, but only after deleting three outdoor schools. The third study was of relatively good quality and was conducted in the UK among students [153]. A real walk in areas differing in the level of prospect and refuge was compared to a video of the same walk. Environments high in prospect and low in refuge resulted in an increase in positive affect and a decrease in negative affect and heart rate compared to environments low in prospect and high in refuge, and all effects were more pronounced in the laboratory than during the real walk.

### **Cross-sectional**

For the cross-sectional categories, again, each section will start with comparisons between different green space types and characteristics. After that, studies looking at availability and / or proximity studies of green space types will be discussed, followed by studies into green space visits. A distinction will be made between actual exposure to green spaces and studies using availability and proximity as proxies for actual exposure.

### Urban Green Space

A total of seven studies enabled a comparison. Six studies compared visits to urban green space with other green space types, namely with a green corridor and farmland [161], countryside visits [155], open lawn with trees [158], the forest [159], rural green and coast [163], and rural green space [156]. Four studies investigated actual exposure to urban green space, and all four studies were conducted in the UK [155, 156] [161, 163]. Two studies found an inferior result for urban green space, both were of relatively good quality [161, 163]. The first study compared walking in different environment types [161]. Stronger associations were reported for walking in farmland and green corridors than walking in urban green space on subjective wellbeing, affect, and perceived stress. The second study compared restorative outcomes of recent visits to a variety of green spaces [163]. Visits to urban green spaces produced less recalled restoration than visits to rural green and coastal areas. Looking at specific types within these broad categories, most urban green space environments (town park, open space, allotment, playground) had similar relations as visits to the countryside, one urban green space type -playing fields- had negative associations. Of the rural environments, a village and a country park also had similar correlations with recalled restoration, but other rural green environments -farmland, the forest, and hill / moor / mountainproduced better recalled restoration. The coast, but not river / lake / canal also produced better results in restoration than countryside visits. Two studies found similar relations of urban green space to that of rural green, but weaker relations for the coast, on restorative effect [156] and subjective wellbeing [155]. These studies were of relatively good and moderate quality, respectively.

Two studies used availability or proximity to urban green space as a proxy for actual exposure. A superior result of urban green space on satisfaction with life was reported, compared to the forest [159]. This study of relatively good quality had been conducted in Germany and found a positive association for urban green space and no association for the forest. The third study, from the USA and of moderate quality found equal correlations of urban green space and open lawn with trees on subjective wellbeing [158].

The seventh study investigated both the quantity and the quality of street greenery and green spaces [154]. Quality of street greenery was defined on five items (maintenance level, variation, clear arrangement, absence of litter, general impression), whereas the quality of green areas were defined on ten items (maintenance level, variation, clear arrangement, absence of litter, general impression, accessibility,



naturalness, colourfulness, shelter, safety). This Dutch study of relatively good quality indicated that both the quantity and quality of street greenery were positively related with mental health, whereas no relation was found between quality of green areas and mental health.

Four studies did not directly allow for comparisons [157, 160, 181, 220]. Two of these studies investigated actual exposure [157, 220]. A study from Finland of relatively good quality indicated that restorative outcomes were higher for favourite places in waterside environments, extensively managed nature areas and exercise and activity / hobby areas (of which 80 % were nature trails) than in indoor and outdoor urban areas and built green spaces [220]. The second study, of moderate quality and from China, found that increased frequency of visits to community / green squares was positively related with subjective wellbeing [157].

One study used availability as a proxy for exposure and were both conducted in the USA [160]. One moderate quality study reported both a positive and a non-significant association [160]. Both larger forest patches and a greater number of forest patches within the city were related to a better quality of life, but no associations were found for mean patch size or the irregularity of the shape of the patches.

### Park

Twelve studies enabled a comparison involving parks. Five of these studies compared parks with other types of green spaces [24, 36, 72, 157, 172]. Three of these studies reported superior results for parks [24, 36, 72], three of these studies were conducted outside Europe [36, 72, 157], two of them were of relatively good quality and both looked at actual exposure [24, 36]. Eight studies either compared different park types or qualities within the park [157, 164, 165, 167-169, 171, 175], of which on study also enabled a comparison of green space type {Ma, 2018 #1073}.

Four studies investigated actual exposure to green space [24, 36, 172] [157], two studies were of relatively good quality [24, 36] and two of moderate quality [157, 172]. In Iran, it was found that spending time in parks for adolescents was better for self-image than spending time in the forest, whereas similar results were reported for the park and the private garden [36]. All three environments had an equal and positive relation with the number of social contacts and time spent with friends. A study conducted in the United Kingdom [24] found that engaging in physical exercise in parks (and sport pitches) resulted in better subjective wellbeing than for physical exercise in forests, garden, and the beach. The same study also reported better outcomes on mental health for parks (as well as in the forest) than physical exercise at home or in the garden, at sport pitches, and at the beach. A study from Switzerland found positive relations between a park visit and subjective wellbeing and stress, but this association was equal to a visit to a forest [172]. A Chinese study included both a park and urban green space [157]. In this study, it was found that visits to community / green squares and city parks had a positive relation with subjective wellbeing, whereas no association was found for the larger country parks.

One study of moderate quality included either availability or proximity measures as proxy for actual exposure [72]. A better quality of life was reported for schoolchildren in Canada living with a higher percentage of park space around the residence area, whereas a negative association was found with the percentage of grass and shrubbery [72].

Eight studies investigated specific types or qualities of the park [157, 164, 165, 167-169, 171, 175], five studies were of moderate quality [157, 164, 165, 167, 175]. Three studies were of relatively good quality and conducted in Mexico [168], Australia [171], and the USA [169]. The first relatively good quality study

[169] only found positive associations, with inhabitants of cities with more park coverage as well as more park amenities scoring higher on subjective wellbeing. The second study [168] also found that a larger park coverage was related with lower depression scores for women, but found no interaction of park coverage and park quality (e.g., bathrooms, lighting, playground). The third study [171] investigated park coverage together with attractiveness of the parks, operationalized as an weighted mean of nine variables; lawn irrigation, walking paths, shade along the paths, sporting facilities, being close to the beach or river, water features, bird life, surrounding roads, and lighting. This study reported no association of park coverage or the number of parks bigger than 0.3 hectare around the residence with psychological distress, but found a negative association for mean attractiveness with higher attractiveness of the parks associated with higher odds for being in the high psychological distress group. The five moderate quality studies also reported mixed results. A study conducted in Singapore found no significant relation between park connectors, neighbourhood parks, or regional parks on subjective wellbeing [164]. An Australian study, did find positive associations, which also differed between park types [165]. Small (< 0,4 ha), district (5-20 ha), and regional (> 20 ha) parks were significantly related with better mental health, whereas no such relation was found for local (0,4-1 ha) and neighbourhood (1-5 ha) parks. Larger parks appeared to have stronger associations, whereas the study also pointed at stronger associations for the presence of sports amenities than for nature. One study from Mexico of moderate quality looked at relationships between different components within a park environment during a park visit and wellbeing [175]. Bird song, naturalness degree, park area, the presence of walking trails, and safety had a positive relation with wellbeing, whereas the height of trees and distance had a negative association. The other two studies were conducted in China. These studies found positive association between the number of trees in the park on quality of life of the elderly [167], whereas no relation was reported for park area, amenities, aesthetics, paths and visibility and paths in the park and a negative effect for the number of parks and the number of activities in the park. In the second study, a positive association of the number of visits to city parks, but no relation for the number of visits to country parks, was found with subjective wellbeing [157].

Five studies did not allow for a direct comparison but still provided information about the relation between mental health and parks [166, 170, 173, 174, 176]. Two studies looked at associations of park visits with mental health [170, 176]. One of these studies, from Singapore, was of relatively good quality. This study found greater odds of experiencing happy moments in parks, while momentary happiness was not affected by park visits [170]. A moderate quality study from Australia found both a positive and a negative association with park visits [176], comparing outcomes from the Australian park visitors to the general score on the scales in the UK. Australia park users scored lower on stress levels, but reported poorer mental health then the general population from the UK. Three of these studies only looked at availability [166, 173, 174]. Two of these studies reported no association of park space with problem behaviour of schoolchildren [173] and a positive relation of residential park area with mental health for the general population, with no relation with distance to parks [174]. One study was of moderate quality and conducted in Lithuania [166]. This study investigated associations of park availability on school children, with positive relations found on problem behaviour for children whose mothers had a low educational background (no relations for children of mothers with a high education) [166].

#### Garden

A garden was only compared to other environments in two studies, which have previously been discussed in the park section [24, 36], with lower benefits of exercising in the garden compared to the park or forest

on mental health, and compared to the park and sports pitches on subjective wellbeing [24]. Self-image was better with increased time spent in the private garden (and the park) than in the forest [36].

One relatively good quality study from the UK investigated the availability of gardens [177]. This study found that having a personal patio increased subjective wellbeing, whereas no associations were found with having a personal or shared back garden, front garden, balcony, or courtyard. A greener view outdoors was also related to better subjective wellbeing, but the number of trees in the view did not affect subjective wellbeing.

### Forest / Woodland

Eleven studies compared associations of the forest with other green space types. Five of these studies have already been discussed at the park or green space comparison section [24, 36, 159, 163, 172]. These five studies found mixed results; inferior results of the forest compared to either time spent in the park or the private garden on self-image [36] and compared to exposure to urban green space on satisfaction with life [159]; superior results of the forest compared to urban green space and countryside visits on restorative effects of recent visits [163] as well as compared to the garden, sports pitches, and the beach as a physical exercise environment for mental health [24]; and positive, but equal, relations of a visit to the forest and to a park [172]. Besides superior results, the forest as a physical exercise environment scored worse than parks and sport pitches on subjective wellbeing.

The remaining seven studies also show a mixed pattern of results. Two studies from the UK looked at actual exposure to the forest [184, 221]. The first study, of relatively good quality, found that trees and woodland in view from the office, together with lawn/ mowed grass, bushes and flowering plants, grassland, and heathland had a better associations with subjective wellbeing than meadows / rough grass and a distant field / countryside [184]. The second study, of moderate quality, found positive associations between a large range of natural settings, including the forest, grassland, enclosed farmland, and heathland and affect as compared to inland bare ground [221].

Five studies used availability or proximity as a proxy for the actual exposure [179-182, 185]. Two studies of relatively good quality reported positive relations of mental health with the forest. A study from the USA reported positive associations for the percentage of forest and mental health, whereas no association was found with herbaceous plants and a negative association for shrubland [179]. A Korean study found that higher scores on forest area and forest volume per capita and per district were related with lower rates of depressive symptoms [182]. Two studies found inferior results for the forest, both were of relatively good quality and using were from the USA [181] and the UK [185]. No relation between the prevalence of autism and percentage of forest was found, whereas more grassland was associated with a lower prevalence of autism [181]. Moving to an area with more broadleaved or coniferous forest did not improve mental health and neither did moving to an area with more arable land or semi-natural grass. On the other hand, an improvement in mental health was reported for moving to an area with more mountain / heath / bog and with more improved grassland [185]. A Belgium study of moderate quality [180] reported mixed results. On the one hand, a positive relation between forest and affect, compared to no association for agricultural land. At the same time, the study also reported an opposite pattern for problem behaviour; no associations were found for the forest whereas agricultural land lowered hyperactivity levels of schoolchildren.

### Grassland and Meadows

Six studies have compared grass or grassland with other types of green spaces. These studies have all been discussed in the previous sections, but generally show a mixed pattern. Only grass, and not forest, lowered autism prevalence [181], but grassland taken together with shrubland had a negative association with schoolchildren's quality of life compared to park space [72]. An open lawn was found to have similar results on subjective wellbeing as social green space [158]. Two studies also compared different types of grassland (as well as with other green space types). These studies found superior results of lawn / mowed grass over rough grass on subjective wellbeing [184], while the other found better outcomes on mental health for moving to an areas with more improved grassland than for moving to areas with more semi-natural grass [185]. A sixth study compared relationships between being in a large range of natural settings, including the forest, grassland, enclosed farmland, and heathland and affect as compared to inland bare ground [221].

One study did not allow for comparison [186]. This Australian study of relatively good quality reported that the percentage of grass around the residence was not related to depression, anxiety, or mental health.

### Trees and other plants

The majority of the studies in this category looked at relationships of tree canopy coverage or street tree density with wellbeing. Eleven studies focused on tree canopy, of which seven studies were conducted in the USA and all studies used proximity or availability as a proxy for actual exposure. Beneficial associations of tree canopy with mental health were reported in nine of the eleven studies, all of relatively good quality, on mental health [174, 186, 189], prevalence of a mental disorder [181, 187], the severity of a mental disorder [190, 192], sleep quality [191], and problematic behaviour [173]. Two of these studies [181, 189] only found positive relations in sub-analyses. One study reported lower prevalence of autism with a higher percent of tree canopy, but only for the areas with the highest traffic density [181], while another study reported a positive relation between tree canopy and mental health, but only in cities with a majority of non-Hispanic Black inhabitants [189]. Two further studies reported non-significant relations of tree canopy coverage besides positive associations. A first study found a positive relation with psychological distress, but no relation with the prevalence of depression or anxiety [186], while the second study found positive relations on problem behaviour but not on all subdimensions of the scale [173]. One study of moderate quality found no relation between tree canopy coverage and mental health for students in Bulgaria [216]. Another study from the USA of relatively good quality reported a negative relation between tree canopy coverage and the odds of moderate to high level of anxiety for children with autism. They did not find this negative relation for typical youth or children with other diagnoses [193].

Besides tree canopy, five studies also investigated plant coverage and tree characteristics. Three of these studies looked at actual exposure [175, 184, 188]. Two of these studies, both of moderate quality, investigated the influence of tree characteristics on mental health. In a study from Italy, it was found that tree stem size did not affect restorative effects, whereas a negative relation was found with stand density [188]. In Mexico, taller trees in parks were related to lower satisfaction with life for park visitors [175]. One study of relatively good quality from the UK found a positive relation between the presence of bushes and flowering plants in view at the office and subjective wellbeing [184].

The two other studies used availability and proximity as a proxy for actual exposure [72, 179]. Both studies looked at vegetation and shrubland cover and both reported negative associations. Shrubland and dense vegetation were not positively related to mental health. A study of moderate quality from Canada reported no association of dense vegetation cover, and a negative relation between the percentage of shrubland



with quality of life [72]. A study of relatively good quality from the USA reported no relation of the size and edge contrast of shrubland patches or the percentage of herbaceous plant patches on the odds for frequent mental distress, whereas they did find a negative association of shorter distances between shrubland patches as well as of more connected shrubland patches [179]. One additional study, which also looked at tree canopy cover, did however report a positive relation between vegetation cover and mental health [174], but in these analysis shrubs were taken together with grass.

### Other Green Space Types

Four studies focused on agricultural land. Two of relatively good quality from the UK [161, 163], and two of moderate quality from Belgium [180] and the UK [183]. Farmland scored better for recalled restoration from recent visits than countryside visits [163], had a positive relation with perceived stress and subjective wellbeing when walking through it [161], and increased happiness when visiting farmland [183]. More agricultural land in the residential area lowered hyperactivity in Belgium, but was not associated with affect [180].

Three studies looked at rural green areas; countryside [155, 184] and nature reserves [164]. The two countryside studies were both from the UK. Countryside views did not influence subjective wellbeing in a relatively good quality study [184]. A study of moderate quality [155] indicated that countryside visits were not related with affect but were positively related to subjective wellbeing. Nature reserves in Singapore did not influence subjective wellbeing [164] in a moderate quality study.

Two studies of relatively good quality found positive relationships of hills / mountains in the UK, with recalled restorative [163] and mental health [185]. Single studies found positive relationships of visiting heathland and affect [183], of physical activity in outdoor courts on subjective wellbeing but not mental health [24]. A greater distance to abandoned land was found to increase satisfaction with life [159] and inland bare ground was also found to negatively influence happiness [183]. Last, protected land had a higher recalled restoration score than non-protected land [156].

### Biodiversity

All five studies in the biodiversity category were of moderate quality and all enabled a comparison on the characteristic biodiversity. A study from Australia [195] found a positive relation between both flora and fauna richness on subjective wellbeing. Similarly, a study from the UK found a positive relation between plant diversity and happiness, with more pronounced results for introduced species [196]. A second UK study found that a better restorative effect was reported when the perceived number of plant species was higher, but no association was found with the perceived number of native species, nor for the perceived number of (native) insects [197]. A Finnish study [199] among the elderly found a positive association between plant diversity and quality of life, but no relation for depressive symptoms. The fifth study, from the UK did not find an association with perceived species richness on subjective wellbeing [198].

### Other Green Space Characteristic

One study from the UK with relatively good quality compared protected with non-protected areas and found better restorative outcomes for the protected areas [156].

Three studies with relatively good quality from Sweden investigated relationships of specific green space types (categorized according the same standard; wild, lush, serene, spacious, culture area) with mental health. One study reported an increase in vitality with more recreational area, but only for females and no

relationship was found for the other three types [202]. A second study did not find an association of the four types with mental health, only an interaction between physical activity and access to serene and spacious areas [203]. The third study reported an improvement in mental health for females that moved to more serene areas, but no relation was found with the other four types [204].

Two studies from Australia, both of relatively good quality, investigated associations of dryland salinity [200, 201], with higher suicide rates in more saline areas [201] as well as an elevated risk for hospitalization with depressive symptoms [200].

## Qualitative

Because the separate categories (i.e., park, forest, garden, etcetera) had too few studies each (four or less) to perform a thematic analysis, the analysis was performed on the entire dataset at once. However when a specific theme or outcome applies to a specific green space type or characteristic only, this will be highlighted. The thematic analysis revealed five overarching themes: restorative experiences from natural features, social interactions, memories and symbolism, weather and seasons, and escapism.

### Restorative experiences from natural features

Natural features were mentioned throughout the different studies. Trees were mentioned in relation to feeling safe, when walking under the canopy (forest: [212]). For example, someone referred to a primeval instinct to be in trees (forest: [212]), whereas another person found comfort and feelings of safety in old trees in the city (nature features: [213]). The interplay of the sun with the leaves in (tall) trees made some feel calm (garden: [209]; general greenspace: [205]), and tall trees were associated with reflection and helped put worries in perspective (forest: [212]). Trees and bushes were perceived as important elements in parks in Australia [176]. In a Persian garden in Iran, observations signalled that most activity took place under shady trees, on the grass, and along water features [209]. People talked about favouring variety and complexity in the forest landscape with some open views and clear sightlines [202].

Water features were also mentioned as calming people down (garden: [209]; general greenspace: [205]; nature features: [213]; garden: [207]). Sounds of water was especially perceived as relaxing. In a study in Iran [209], some interviewees indicated they would come back during the night so that they could hear the sound of the water features better. Quietness and birdsong were other "sounds" of nature that were appreciated (Trees and other plants; [197]; forest: [212]). The importance of sound was also highlighted in the virtual forest [127]. Flowering plants, on the other hand, provided mixed results. For instance, they were found to be too stimulating and therefore hinder relaxation (Trees and other plants; [197]), but the excitement and energy was also enjoyed and appreciated [176, 207]. Another aspect that made people feel calm was related to the senses; experiencing the ground, stepping on the leaves and sinking into the mud (park: [205]; park: [176]; garden: [207]).

A need for an experience of 'raw nature' was also expressed in the fact that human interference in natural settings were not always appreciated. Wild, or untended, forests were preferred (forest: [211]; [207]). In the UK, it was found that disabled persons could appreciate challenging areas in the forest and would not want all obstacles to be removed in order to facilitate their own access (forest: [212]). In the same study, it was mentioned that the preference for more wild nature may be different between life stages (e.g., different level of wilderness is preferred when you have children).



### Social interaction

The presence of humans other than oneself in natural environments rendered mixed responses. In one study, with people visiting a rehabilitation garden, the general feeling was that people enjoyed being alone, and even explicitly searched for areas in the garden where they could be alone, at a distance from others [207], in another study some talked about seeking solitude [202]. In a Danish study, a distinction was found between those living in shared housing, who went to the park to find personal space and to be 'yourself' and those living alone [213]. The social interaction with others was explicitly mentioned as a positive thing for a forest visit for dementia patients [210]. In a UK study watching others enjoying themselves in a forest could be a positive experience [202].

### Memories and symbolism

Visits to the woods also brought back many childhood memories, for dementia patients [210], but also for members of the general public [212, 213]. For instance, the flowers and scent of a particular tree brought back childhood memories of a family holiday [213]. Garden visits were perceived as beneficial for patients with dementia [206], whereas a Persian garden also triggered childhood memories for the general public [209]. The rehabilitation garden also helped people deal with bad memories, by facilitating reflection [207].

Reflection, contemplation, and taking psychological distance from daily hassles and worries were often mentioned as a merit of green space, for gardens [207], the forest [212], and parks [205, 213]. In this process, natural elements often took on symbolic values such as space at the waterside [213], grounding [205], or taking distance [207]. People thus often found visits to green spaces to provide a chance to escape from daily hassles (garden: [207]; park: [213]; park: [176])), from the noise and distraction of the city as well as the lights and traffic (park: [213]), from technology (park: [176]), it offered a place to hide (forest: [212], garden: [207, 209]; general nature: [205]), and to help deal with new impressions (garden: [207]).

#### Weather, seasons, and senses

The flow of time was not only a factor when experiencing escapism, it was also reflected in the change of seasons and different weather types. Some expressed the need for warm weather to stay in a rehabilitation garden longer [207]. Sunny weather, and the interaction of sunlight with the leaves of trees were mentioned as a positive aspect as well (garden: [209]; general: [205]), whereas others indicated that they felt happy when they walked through a city park in the rain [213]. In a park in Copenhagen, respondents mentioned that it enabled the experience of changing seasons and changing light conditions, which was not always visible within the city itself [213]. In a UK study of forests changes in the seasons gave visitors a sense of connection to nature cycles and seasonal change could be linked to sensory experiences such as seeing autumn colours, crunching leaves underfoot and the smell of pines after rain [202].

## 5. Discussion

The aim of this report was to gain a better understanding of how different green space types and characteristics can help maintain and improve mental health. Three types of studies were included in the systematic review: i.e., experimental studies, cross-sectional studies, and qualitative studies. In the search, the PICO/PECO approach was adopted to capture a relevant range of studies in population, intervention and exposure, comparison, and outcomes. All types of human populations were deemed relevant to capture effects on all potential users of urban green space. More stringent criteria were formulated for the interventions (experimental studies) and exposure (cross-sectional studies), where only studies looking at one or more specific green space types or characteristics were included.

Studies that enabled a direct comparison between different types of green space or green spaces with different characteristics were prioritized, but studies that only allowed for an indirect comparison were also included – as long as they provided information on exposure to a specific green space type or characteristic (e.g., pre-post design, or a comparison with a built-up environment).

Comparisons between different types of green spaces and characteristics were possible in the experimental and cross-sectional study category only. Even though different green space types were also included in the qualitative studies, the reported results did not differentiate enough between the different green space types to enable a comparison. In the experimental studies, around one third of the studies enabled a comparison between different green space types and green space characteristics and these comparisons were often direct (e.g., comparing a visit to the park to a visit to the forest). In the cross-sectional study category, on the other hand, more studies enabled a comparison between green space types and characteristics (more than half of the included studies), but especially research into green space types did not always have the specific aim to compare different green space types. Therefore, comparisons often had to be made indirectly by looking at differences in directions of the effects or differences in the strength of the association rather than making a direct comparison. Some studies were very specific and different from all other studies to contribute to the outcomes, such as a study comparing mental health outcomes of climbing a real versus an artificial tree [147], or looking at effects of salinity in Australia [200, 201], or the effects of a green stormwater infrastructure [150]. Overall, the majority of studies pointed at benefits of green space on mental health, but results of the comparisons between different green space types and characteristics showed mixed results.

Both momentary measures of mental health, such as affect, and long-term measures of mental health, such as prevalence of a certain mental disorder, were included. That there is a range of mental health outcomes that can each in their own way be affected by exposure to green space has already been recognized in a recent theoretical framework linking nature and mental health from an ecoservice perspective that was introduced in the introduction section of this report [56]. Besides this range of mental health effects, the size, type, and quality of natural features was deemed of importance, as well as exposure in terms of the time spent in the environment, or – as a proxy for exposure -the proximity to green space, and the experiences that people have in these environments. The determination of the effects of the natural features was at the core of the present systematic review, but effects were also documented in terms of the type of exposure measure (time spent in the environment, or availability / proximity, direct or indirect exposure) and factors related to the experiences people have in the environments. Especially this latter factor can be very broad, as the focus is on what the authors [56] call 'absorbed internal dosage' meaning that it is not just exposure in terms of minutes or hours that count, but that there are also individual as well as environmental factors that influence the dosage of nature that people get or require. For instance, five



minutes in a high-quality park environment may give a larger mental health benefit than twenty minutes in a low-quality park environment and, importantly, what is considered a 'high-quality' green environment may depend on personal experience and thus individual background, preferences, and needs.

The importance of the factors between exposure and experience were highlighted in the present review as in some cases, such as the comparison between effects of the park versus the forest, contradictions were found between short term and long term mental health effects.

### 5.1 Urban green space, the park, and the forest

Most frequently studied, and compared, were the park, urban green space, and the forest. In the experimental studies, there was great similarity in terms of study design (going for a walk in the park versus the forest), the outcome variables (mostly affect and physiological stress) the participants (mostly students and employees), and the geographical location where the study was conducted (the majority in Asia) when comparing the park and the forest. Affect was often measured with the Profile Of Mood States [219], which has multiple subdimensions, and physiological stress was measured with multiple predictors (e.g., heart rate and blood pressure). Consistently, the forest scored better than the park on some (but not all) of these subdimensions of both affect and physiological stress. Closely related to the park-forest comparison were studies comparing the forest with an urban green space. In the experimental studies, one study compared urban green space (including a park) with peri-urban green space (including a forest) and found better outcomes for the peri-urban than for the urban green space on restorative outcomes [92]. In another study, a wilderness type setting also scored better than a park on physiology [93].

The cross-sectional studies did not corroborate the experimental findings; two studies enabled direct comparison between the park and the forest and both found the opposite pattern; exercising in the park resulted in a higher subjective wellbeing than exercising in the forest [24], while spending time in the park led to a better self-image than spending time in the forest for adolescents [36]. A cross-sectional study found a positive relationship between availability of urban green space and satisfaction with life, however there was no association for the forest [159]. Another study found a positive association of both a park visit and a forest visit with subjective wellbeing, but no difference between the two environments. Thus, whereas the forest generally scored better than the park or urban green space in the experimental studies, the exact opposite pattern seems to appear for most of the cross-sectional studies.

These seemingly contradictory findings may be due to outcomes depending on the amount of exposure. Total exposure over time is assumed to be important for long-term wellbeing benefits, with recent research indicating that at least 2-hours exposure per week is necessary to gain health-benefits, with no differentiation in outcomes between one long or many short visits (see also [222]). Differences in exposure have not been taking into account in the above comparison of the outcomes of experimental and crosssectional studies. For many people, parks may be more proximate and accessible than forests, and therefore visited more often, leading to a higher total exposure to that type of environment. Research has indicated that on average people only spend a very small percentage of their time in natural environments, around 2 percent [52, 223], and the distribution of the time spent in green spaces between different types is of yet unknown.

In the experimental studies, the participants are often taken along to a certain natural environment rather than that they choose to be there themselves. It could be, for instance, that part of the participants normally would never actually visit a park or forest. It is also often not known whether the green space was familiar to the participants, or entirely novel, or whether there was a person-environment fit. Forests may be more fascinating or more novel to participants and therefore produce better momentary effects. On the other hand, they may also be more natural or less crowded. Speculatively, there may be a difference in time spent between parks and forests in everyday life which may reflect in more pronounced long-term benefits of parks rather than forests, even when forests produce better momentary mental health outcomes.

Studies looking at time spent in a certain green space type may shed some light on this. Time spent in the park was found positively related to mental health in the three experimental studies that looked at this association, with outcomes on physiological stress, affect, and satisfaction with life, whereas only one study also reported more tiredness with increased time spent in the park [94, 95, 101]. The cross-sectional studies showed a similar pattern, with increased frequency of visits to community / green squares related to higher subjective wellbeing and greater odds for happy moments when visiting parks [170, 176]. In line, the number of visits to city parks (but not for visits to country parks) were positively related to quality of life [157]. Potentially, city parks may be in closer proximity and therefore visited more often than country parks. Increased time spent in the forest was not investigated in any other study than the one earlier reported [36], which found a lower self-image for adolescents with increased time in the forest. As only one study focused on time spent in the forest, this outcome may not be considered representative for the general effects of spending time in the forest. One of the included cross-sectional studies investigated both visit frequency and visit duration and pointed at the complexity of the measurement of exposure dose, as small parks (< 1 ha) were visited more frequently, but shorter than large parks (> 4,6 ha) [175].

Perhaps, the key to the differential findings can also be found in the studies investigating the effects of these green space types when compared to an urban built environment, or those looking at singular effects of the green space types, without a comparison. These studies generally focused on short-term health outcomes and pointed at beneficial effects of the green spaces on mental health outcomes. All six experimental studies comparing a park with an urban environment showed positive effects on at least one outcome of affect or physiological stress [97, 99, 107-109, 182], as did most of the ten studies comparing the forest to an urban built environment [123-125, 128, 129, 133-136, 138], and the two studies investigating urban green spaces with urban built environments [88, 89]. A visit to the park was related to better affect and less strain [87, 96, 102], as was a visit to the forest [126, 127, 132, 140]. Trees and forest in the view generated better subjective wellbeing, people where happier in the forest, and more street greenery was generally related to better mental health [154, 184, 221].

Availability of, or proximity to, an urban green space, a park, or a forest as a proxy for exposure rendered more mixed results. Total park area around the residence was not related with problem behaviour [173], or only for children coming from a lower socio-economic background [166], and no relation was found for forest area on hyperactivity [180], nor was it related to the prevalence of autism [181]. Forest availability was associated with greater quality of life [160] while higher park availability was associated with greater quality of life for children in one study [72], yet with lower quality of life for the elderly in another study [174]. Affect was positively associated with forest availability [180], but not with park availability [164]. Both forest area and park proximity were related with less depressive symptoms [168, 182]. Forest area was also found unrelated to mental health in one study [185] and only forest-edge contrast was related in another study [179], whereas park area (but not proximity) was found positively related to mental health in one study [174], but unrelated to mental health in yet another study [171]. Two studies reported a positive relation between percentage of park around the residence and subjective wellbeing [165, 169], whereas another study did not confirm such an association [164].



A potential complicating factor in cross-sectional research using availability or proximity of one or multiple green spaces as proxy for real exposure is that different green space types may act as substitutes for each other. Systematic review looking at total green space exposure (not differentiating between different green space types) have pointed at better mental health [59], better emotional and behavioural functioning for children [224], and lower all-cause mortality with an increase in the quantity of surrounding greenness [225]. If other types of green space are not taken into account as covariates, and at the same time are to some extent substitutes for the type studied, the observed association may depend on to what extent these other types are present. This presence of the substitute could be negatively associated with the presence of the green space type under study. A negative association between substitutable types could lead to a lower positive, no, or even a negative association, because of neglecting the other types. For example, if urban parks of a large city are located in the city centre, and there is a peri-urban forest surrounding the city, a study looking only at access to urban parks might produce a very low positive association with well-being, because those with bad access to urban parks are likely to have good access to the peri-urban forest (acting as a substitute). If so, studies looking at the total amount of green space, or (semi-)natural environments, might produce more consistent results than studies looking at only one type of green space, thereby ignoring other types.

Differences in short-term and long-term benefits may depend on differences in exposure, but could also reflect differences in the quality of these environments. These qualities were also investigated, but these studies showed a large extent of heterogeneity in types of characteristics investigated as well as outcomes. Higher quality street greenery (and not the quality of green areas) was found related to better mental health [154]. For urban green space, better outcomes were found for those that were contemplating or those that were being active compared to those performing passive activities or socializing [92]. For parks, beneficial effects on mental health outcomes were found for: larger parks [165]; viewing certain elements (lake, walkway, and partly for a lawn) [100], more acoustic comfort [105], less light pollution [106], more amenities [169], bird song [175], a higher degree of naturalness [175], more trees [167]. No effects were found for viewing a plaza [100]; greenness of the park [105]; the visibility of the sky [105]; park quality [168]; and the number of amenities and paths in the park, aesthetics, and visibility [167]. Three studies found a negative association between; number of parks and number of activities in the park for the elderly [167]; attractiveness of the park [171]; and taller trees [175] and mental health outcomes. In the forest, better mental health outcomes were reported for walking in the forest than for only viewing the forest [125], for the sound of a brook in the forest [138], a tended (versus wild) forest [130], unthinned versus a thinned forest [131], the interior versus the edge or exterior of the forest [139].

Four studies reported negative effects of parks on mental health outcomes [167, 171, 175, 176], and four studies found negative effects of the forest [36, 126, 127, 226]. All eight studies were conducted outside Europe: Australia [127, 171, 176], Japan [126, 226], Mexico [175], Iran [36], and China [167]. All studies that found a negative effect of the park were cross-sectional studies, whereas three of the four studies reporting negative effects of the forest were experimental studies [126, 127, 226].

For the park, a negative association was found between the number of parks and the number of activities in these parks for the quality of life for elderly residents in China [167]. A study in Australia found negative association between park attractiveness and mental health for adults [171]. It must be noted, though, that the attractiveness of the parks was slightly higher in areas with a lower socio-economic status, and a lower socio-economic status – in turn – also resulted in lower mental health. The study found inconclusive results for the relation between parks, mental health, and socio-economic status. The third study that found a negative association for the park only found that taller trees were related to lower subjective wellbeing

[175], whereas other indicators (such as naturalness degree) were positively related to subjective wellbeing. Last, a study compared mental health scores of Australian park users to those from the general population in the UK and found lower scores. It is questionable [176] whether these differences reflect an effect of the park on its' users, or whether there were other differences between the two samples.

For the forest, the only cross-sectional study in this category found a lower self-image with increased time spent in the forest for adolescents [36]. The experimental studies found an increase in boredom over time when visiting a forest [126]. Boredom was, however, overall higher on a control day. A Japanese pilot study found that the participants that preferred watching a video of the sea reported a decrease in vigour after viewing a video of the forest, these results are based – though- on a relatively small sample size (6 students preferred the sea) [226]. The last study that found a negative effect of the forest tested effects of a virtual forest on people with dementia [127]. As there was no control condition, it is not clear whether the increase in anxiety was due to the forest environment or the Virtual Reality experience, though.

It seems that both the forest and the park predominantly had beneficial effects on mental health on the short-term, with more pronounced effects of the forest. For long-term effects, studies often rely on availability or proximity as a proxy of real exposure. These studies generally rendered more mixed results but did point at beneficial associations between availability of both the park and the forest and mental health, with more pronounced effect of parks or urban green space in direct comparisons in three studies. Specific qualities of the environments also appear to have varying effects on mental health outcomes, and also rendered some rather unexpected outcomes with negative associations between the number of parks and attractiveness of the parks and mental health outcomes. The variety in outcomes for both availability studies and qualities might be at least partly due to the different population types, with mostly large differences between studies looking at the youth versus those including only the elderly (e.g., effects of the park on quality of life). This is in line with previous research pointing at the different functions and different uses of green space across the lifespan [54, 227]. In addition, the typologies urban green space, park, and forest are rather broad categories and the specific elements and qualities can differ substantially among them. Research looking at specific trees and vegetation seems necessary to provide additional insights.

## 5.2 Lawns, trees and other vegetation

In the above section, when discussing the forest, we already noticed that in one study better outcomes were reported for a tended compared to a wild forest [130], whereas contradictory results were reported in another study with better outcomes for looking at a thinned versus an unthinned forest [131].

Similar comparisons between managed and unmanaged green spaces were made for meadows or lawns in three studies. The first study, from the experimental category, found no difference between managed and unmanaged meadows in the Alps [143], this study only reported better restorative outcomes for a more remote meadow. Two cross-sectional studies found superior results for tended grass over rough grass [184] and of improved grassland over semi-natural grassland [185]. Thus, better outcomes appeared for more managed grassland.

Other studies also pointed at specific benefits of grassland, such as a lower prevalence of autism with higher availability of grass (against no effect for the forest) [181]. One study found a negative relation concerning the percentage of grass around the residence and mental health in Australia [186]. Grassland taken together with shrubland, resulted in both a negative association [72] and a positive association with mental health outcomes [174]. In a third study the percentage of shrubland was not related with mental



health outcomes, but this study reported negative associations with shorter distances between the shrubland patches and more connected shrubland [179].

Trees were also studied outside the context of the forest. Two studies compared different types of trees, and found no differences in mental health benefits [125, 146]. Roads with street trees (as compared to a control road without street trees) produced better mental health outcomes [146], which is in line with outcomes reported earlier associating higher levels of street greenery with better mental health [154]. A more general measure of tree coverage 'tree canopy'- has received special attention in the USA. The majority of these studies reported at least one positive association between tree canopy coverage and mental health outcomes, whereas one study found that more tree canopy was related to more anxiety for children with autism [193]. Importantly, a number of studies compared different types of tree, or different types of forest, and did not find any differences between the different tree species.

In the qualitative studies, trees, and especially older trees, were given symbolic value and related to feeling safe and calm [212, 213]). [209] [205]. Contradictory findings were reported in the quantitative studies. In a park environment, a negative relationship of satisfaction with life was reported for taller trees [175]. In addition, stand density (taking into account both the number of trees and their diameter) -but not stem tree size- was negatively related with restorative outcomes [188].

For people with psychosis, better mental health outcomes were found for trees and bushes showing green and autumn colours compared to flowering bushes [145]. Similarly, two qualitative studies indicated that flowering plants could be too stimulating when people were experiencing mental health problems [197, 207]. Another study, using "healthy" employees found a positive relation between flowering plants and bushes in the view from the office and subjective wellbeing. Potentially, flowering plants are appreciated more when feeling mentally healthy, a finding that was corroborated in two qualitative studies [176, 207].

It is, thus, not only specific types of green areas such as parks or forests that matter, the trees in the city can also benefit mental health. In addition, the choice of vegetation can influence the beneficial effects of an urban green space, and this can highly depend on the target population, especially with regards to their mental health status.

## 5.3 Gardens

A green space where vegetation choice is often made very explicitly is the garden. Few studies (eleven in total) included in the review focused on effects of a garden on mental health outcomes, and this green space type encompassed both private and public gardens. Seven studies investigated the effects of public gardens, and only one tested the effects of a botanical garden on mental health outcomes by comparing it to a Japanese and an architectural garden [122]. This study found no difference in physiological responses between them, but better affective outcomes for the Japanese garden. Two other studies investigated the effects of a Japanese garden. The first compared effects of viewing a Japanese garden with an unstructured garden for the youth and found some evidence for increases in physiological stress when viewing the unstructured garden [218]. The second study tested effects of the implementation of a Japanese garden versus a non-Japanese garden for dementia patients and found lower pulse rates after installing the Japanese garden, and improvements in behaviour after implementation of both gardens with no difference between the two [121].

Two studies looked at the effects of the implementation of a wander garden for dementia patients, and found mixed results [115, 116]. Less medication had to be prescribed after the implementation, but only for

secondary antidepressant medication (primary medication prescriptions increased). Less agitation was reported, but at the same time also an increase in serious incidents causing personal harm to others. A study among nurses found that lunch breaks in the hospital garden lowered burnout scores [117].

One study compared effects of viewing images of a traditional Korean garden with images of an urban built environment, and found better outcomes for the garden in terms of affect and anxiety (but not vigour) [119].

Four studies looked at effects of the private garden. Constructing a private garden in Peru led to less perceived stress a half year later and a higher quality of life a year after constructing the garden [150]. Having a garden (versus not) for elderly people in the UK was only found beneficial for a personal patio on subjective wellbeing [177], not for a back or front garden, a balcony, or a courtyard. A greener view was also found more beneficial, but not the number of trees in the view. Spending more time in the private garden for the youth resulted in a better self-image than spending time in the forest, and a similar effect was found for the private garden with spending time in the park [36]. Last, engaging in physical exercise in the garden proved less beneficial for mental health than exercising in the park or forest, and less beneficial for subjective wellbeing than exercising in the park or sport pitches [24]. Importantly, doing housework or gardening was included in the measurement of physical exercise.

The results for private gardens pointed towards the benefits of having a private garden but once again appeared to depend on both the activity performed in the garden and the population type (especially in terms of life stage) under study. The few garden studies carefully pointed at more pronounced benefits of structured public gardens, but there were too few studies included to come to a solid conclusion. Furthermore, the studies that were included were all conducted outside Europe and often in Asian contexts, where there are likely to exist different cultural associations with a range of landscapes and habitats, which hinders generalization of the results. Not only the design of the garden can be of importance, but also the variety of vegetation types and the choice for native versus introduced species.

## **5.4 Biodiversity**

A total of eight studies included measures of biodiversity, this could relate both to flora or fauna and be operationalized as field measurements or perceived biodiversity. Green spaces with higher biodiversity levels resulted in better restorative outcomes than those low in biodiversity in Italy [92], greater flora and fauna richness was related to better subjective wellbeing in Australia [195], between plant diversity and quality of life for the elderly [199], and between plant diversity and happiness, with more pronounced effects of introduced species [196]. Perceived biodiversity did not influence post-walk affect for the elderly in the UK [148] and did not influence subjective wellbeing [198], whereas perceived number of plant species (but not perceived number of native species or insects) was positively related with restorative effects [197]. In Taiwan, no effect was found for richness and abundance, but settings with more even biodiversity resulted in lower heart rate [149].

In a recent review on the mental health benefits of biodiversity it has been argued that there is a need to look at the effects of experienced, or perceived, biodiversity besides objectively measured biodiversity as for instance not all insects or plants may be perceived by green space visitors [228]. For the studies included in the present review, four studies with objective measures [92, 149, 195, 199] for biodiversity and two study using perceived biodiversity [196, 197] reported at least one positive associations with or positive effects on mental health, whereas two studies employing perceived biodiversity [148] [198]



reported no effect of biodiversity on mental health. Thus, objective biodiversity levels may have more pronounced effects than how the green space visitors perceive the biodiversity.

### 5.5 Other green space types and characteristics

Green space types that received less attention were included in the miscellaneous category. Four of these studies looked at farmland [161, 163, 180, 183], and three at the countryside [155, 164, 184]. Farmland was generally related with better mental health outcomes than urban green space in two studies [161, 163], better than the forest for hyperactivity levels, but not for positive affect [180], and the fourth study reported higher happiness for a wide range of natural areas (only not for inland bare ground) [221]. Findings for countryside visits signalled that these countryside visits or views either had similar effects to urban green space [155, 163] or even inferior effects [184].

Two studies reported superior findings for mountains, in a combined category with hills and moors in one study compared to countryside visits [163], and combined with heath and bog in the second study compared to the forest (broadleaved and coniferous), arable land, semi-natural grassland, and freshwater. Three studies conducted in Sweden [202-204] investigated the relation of availability of environments divided in five pre-defined categories (based on a proposed framework) of nature characteristics; wild, lush, serene, spacious, and cultural natural areas. These three studies found only limited associations, mostly in sub-analyses such as only for females (recreational or serene nature) [202, 203] or for an interaction with physical activity (serene nature) [204]. Other green space characteristics were relevant, but only addressed in single studies and therefore more difficult to generalize. Better restorative outcomes were reported for protected compared to non-protected areas [156], greater stress reduction may have occurred for contemplative than for non-contemplative green areas [152], while areas high in prospect and low in refuge scored better on affect and produced better physiological outcomes than areas low in prospect and high in refuge [153].

No firm conclusions can be made on the basis of single studies, even if they can be considered informative, pointing at potentially relevant venues for future research.

## 5.6 Green space users and activities

In the sections above, outcomes were mostly discussed in terms of natural features and exposure, but less in terms of experience. Users' characteristics can greatly influence whether and how he or she benefits in terms of mental health from the different green spaces and related characteristics, and also which dose of the green space or green space characteristic is necessary to reach a certain effect. Relevant characteristics identified in previous research and corroborated in the present review include for instance life stage, mental health status, and socio-economic status.

Children interact differently with nature than adults, and the elderly may also have different needs and preferences than younger individuals. In the present review, these differences sometimes appeared so pronounced that even opposite outcomes were reported for children and the elderly. For instance, more residential park availability was related with a better quality of life for children, but showed a negative relation with quality of life for the elderly [72, 167], and more parks were related to or tree canopy coverage was generally positively related with mental health outcomes for the general population, but not for children with autism [193]. These outcomes may be highly unique for the setting of those studies, but research has also pointed at differential effects based on life stage, with for instance more emphasis on being active and socializing for the youth than for the elderly [227].

Some studies pointed at more pronounced effects for people with mental health problems [95], which is in line with earlier findings [51-53]. People with worse mental health sometimes also used the green space differently, for instance by staying longer [94]. In addition, people with mental health problems may actively seek out certain environments, which was the case in a rehabilitation garden where people actively sought different types of green environments when experiencing different moods and at different stages of their rehabilitation process [207]. This might, for instance, have also been the case in a study where a significant relation was reported between more time spent in the forest (often a more secluded environment) and lower self-image, as compared to the park or a private garden [36]. The present review also points at differential beneficial outcomes of green space qualities for people with good versus poor mental health, such as the presence of flowering plants [145, 207].

Certain outcomes were only found in sub analyses. For instance, effects were found for females but not for men [122, 144, 201, 202, 204], or only for respondents with lower socio-economic status (e.g., [166]). The importance of socio-economic status as a potential mediating factor for health-effects of green space has already been established in previous research (e.g., [55]), but have also been challenged by outcomes included in the present review [171]. This latter study [171] suggested to look at interactions between socio-economic status and qualities of the park, such as safety perception. Other relevant characteristics that may matter but could not be differentiated on in the present review are for instance lifestyle factors, connectedness to nature, occupation, or family composition (e.g., having young versus older versus no children, marital status).

Another important finding of the present review is that mental health outcomes of green spaces may depend on what people are doing in the green space. A distinction was sometimes made between participants engaging in active versus passive activities. For instance, in urban green space, more pronounced benefits were found for those contemplating the setting or walking than for those reading and socializing [92]. On the other hand, better results were reported for active park lingerers than for walkers for the elderly visiting the park and no difference with passive scanners [96]. Six studies in this review explicitly focused on people exercising in natural environments [24, 104, 142, 147, 148, 161] and found superior effects on mental health for those engaging in physical exercise in either the park, the forest, or a sports pitch than in the garden or at the beach [229], no difference between running in grassland, a heritage park, along the beach, or alongside a river [230], and better outcomes when walking in green corridors, farmland compared to walking in urban green space [161].

## 5.7 Putting the green space in context

Not only can differences be expected between different types of green space visitors (or viewers), but the physical context in which the study is conducted also matters a great deal, not only in terms of exposure but also for the experience the green space visitors will have. This relates to geographical location, with differences in population density, climate, and culture. Some studies, for instance, only found positive effects of green space for people living in high-density areas [181], or only for urban and peri-urban areas [72]. The population density of the location in which the study is conducted is often not reported, and therefore sometimes also made it difficult in the present systematic review to distinguish between urban and rural setting in the outcomes.

Locations can also differ greatly in climate. For one study, the authors attributed finding only nonsignificant effects of the park on several mental health outcomes to the fact that they performed their research in a tropical region and claimed benefits of the park may not hold here [164]. In hot climates, the



presence of shady areas under trees may be of greater importance than in more temperate climates. Indeed, one of the qualitative studies indicated that shady park areas were often used [209] and the potential of green spaces to cool down the city are reported as an additional benefit [71, 91, 231].

The season in which the study was conducted was not always reported and one study indicated that trees and bushes undergoing different seasonal changes may also affect people differently [145]. Mental health outcomes of green space thus also depend on the season and weather type under which studies were conducted, but these contextual factors are often overlooked [232]. An additional example can be found in the Trees and other plants category. Whereas the majority of studies found at least one positive relation between tree canopy and mental health outcomes, a study from Bulgaria did not report any significant results for tree canopy [216]. This study, however, was conducted among students between October and November and thus during autumn season. Potentially, a lack of effects could be due to the fact that mental health effects of tree canopy were measured while the trees were in autumn colours or even without leaves already. Season, climate, and weather are thus important factors to take into account when designing a study, or at least when reporting the study, but also when reviewing study results or when designing urban green space.

Shade from the sun is one way in which light interacts with effects of green spaces, light pollution from the city is another example [106]. Some studies considered the light conditions in parks and an important element for park visits [175] or as a quantifier of the quality of the park [171]. Besides light, other sensory modalities may be of importance such as smell or sound, but these contextual factors have not received much attention yet, one study did outline sensory aspects of woodland that study participants enjoyed [202].

## **5.8 Limitations**

Not all studies reported important descriptions of their study, including the population density or the season in which the study was conducted. For the present review, it may be especially problematic that it is not always clear whether a study as performed in a dense urban environment or a quieter peri-urban or rural area, as these differences may affect the outcomes.

Another limitation of the present review is that not all studies directly compared different green space types or characteristics. Therefore, many comparisons between different green space types had to be made indirectly, for instance by comparing which green space types generated significant and positive effects on mental health compared to those that generated no effects or even negative effects. Therefore, a study in which two green space types both showed significant positive outcomes compared to e.g. a built-up environment were rated as having a similar effect in the indirect comparison. However, there may still exist differences between these green space types in effect size. It would be desirable that in future research, or even when using existing datasets, more direct comparisons are made.

Benefits of a certain green space type or characteristic may depend greatly on the amount of exposure (e.g., [8, 56], especially when looking at long-term mental health outcomes that may develop over time. When effects develop over time, results from momentary measurements of a one-time exposure (as often is the case for experimental studies), or studies focusing only on availability as a proxy for actual exposure may not provide a complete overview of the effects of green space on mental health. These studies comprised a large proportion of the present review, though. Thus, smaller -or less pronounced- effects on long-term mental health in the present review may not necessarily (only) reflect differential effects of

green space qualities, but rather differences in accumulated exposure. This limits the ability to draw firm conclusions based on the review.

In addition, a number of studies were included that looked only at proximity or availability of only one type of green space (e.g. urban parks). These studies may have ignored other types of green space that might fulfil similar functions (and could act as a substitute for the green space type under study). Depending on the local context, the presence of these 'substitute' green space types may be negatively related to that of the type under investigation, and could also be a source of heterogeneity in outcomes.

The last two limitations relate to decisions made when defining the set-up of this systematic review. First, during the literature search, the term nature and natural had to be deleted as they rendered too many irrelevant records, since many people use these terms in a symbolic fashion rather than referring to natural environments. Therefore, studies that did not use terms specific for green space types or characteristics in their title or abstract may not have been retrieved by the search, nor were those that used nature rather than green space. Second, the search was narrowed down to direct effects on mental health and did not include outcomes that were not directly measuring mental health but that were indirectly related to it, such as physical activity or the cognitive aspect of attention restoration.

## 5.9 Quality of the included studies

Even though a relatively high number of studies were included, they were not always of good quality. Especially in the experimental study category, overall scores for the critical appraisal were not high. None of the studies, in addition, could be considered a Randomized Controlled Trial and it was especially the blinding of participants and outcomes that proved problematic. Blinding of participants to the manipulation is a known challenge when testing effects of environmental interventions, but blinding of outcome assessment and a more stringent design in terms of randomization and generalisation to the population under study are important avenues for improvement of the experimental studies. In addition, many studies in this category used students as a convenience sample, which limited the generalisability of the results to the entire population. In terms of green space manipulations, the studies often provided a good overview of the visit duration and frequency, but not always of the familiarity of the environment to the participants, nor did it provide information about the person-environment fit in almost all studies, i.e., did a person visit this location more often, or did they prefer other green space types. One study did investigate preferences for natural space types, comparing the forest to the sea, and found differential effects for people with different preferences [226].

In the cross-sectional category, the quality was generally better but still an improvement can be accomplished by including more longitudinal study designs, by a better alignment of study sample with the population, and by more detailed knowledge of the actual exposure in terms of duration and frequency of the individual visits (as many studies only look at proximity or availability of green space types or elements on mental health outcomes). In line, contrasting different green space types seems necessary to rule out substitute effects of the different green space types.

For the qualitative studies, stakeholder involvement scored low for all studies, which could be considered an important venue for improvement. In addition, even though the studies used specific green space types the analysis and results did not differentiate between these different green areas which made the results difficult to interpret in terms of differential effects of the individual green space types.



The studies focused mainly on urban green space, the park, the forest, and the category trees and other plants. Less attention was given to other green space types, and even fewer attention was given to green space characteristics. Little research, for instance focused on mountains or compared different types tree species in the forest. There are many different green space types and characteristics and therefore it may not be so surprising that not all of these natural features have received enough attention yet, but there certainly is potential for future research to further expand the knowledge base for the beneficial effects of specific green space types and characteristics. Advancing our knowledge on natural features would, however, greatly benefit from a standardized categorization of green space types and characteristics as well as a more detailed description of it. Even though parks and forests as an overarching category can be distinguished in the present review, the subtleties between the different types of parks or forests can often not be fully distinguished upon based on the description provided. In addition, there are many different descriptions for the same category (i.e., parks are sometimes also included in urban green space) and different green space types are often collapsed in a single category (e.g., mountain, heath, bog) which makes it more difficult to draw conclusions.

## 5.10 Progressing urban green space salutogenic design

Despite the mentioned limitations, the outcomes of the present report provide useful insights that can inform decision makers, urban planners, and landscape architects when designing urban green space. Even though most urban green space types had a positive relation with mental health, the comparisons between the different green space types produced highly heterogeneous results. The first and foremost conclusion of the report is thus that generally speaking, it is not one green space type or quality that stands out over the others in terms of the beneficial effects on mental health. Or, alternatively, there is not one specific green space type that works best for all target groups and for all geographical locations. In addition, results indicate that the same green space type may produce different mental health outcomes for different subgroups of the population and for different seasons, geographical locations, and microclimates. Therefore, it seems important to get to know the future population's needs and preferences, and adapting the green space design to that. A thorough social, ecological, and environmental analysis can assist to exploit the full potential of urban green space. A variety of green spaces rather than standard configurations and higher concentrations of a certain green space typology or quality may be necessary to accommodate all different types of green space user profiles and their needs, especially in the highly diverse and dynamic urban and peri-urban settings and while facing the consequences of climate change. There needs to be a more thorough understanding, though, of who needs which type of green space and at what time before firm design implications can be formulated. This would benefit from a more thorough mapping of the actual exposure of individuals to the specific green space types and gaining a better understanding in the experiences people have in these green spaces.

Even though not all is known about who needs what type of green space or element and at which time, there are a number of key findings. Parks, forests, grassland, and other urban green spaces (such as green community squares, or greenways) can independently improve mental health. Potentially, parks may be more beneficial for long-term mental health and forests more for short-term effects.

Not only designated urban green spaces such as urban parks or forests appeared to matter, but also street greenery, trees, and urban green space. Outcomes indicated a clear relation between more trees and better mental health [173, 174, 181, 186, 187, 189-192]. The importance of nearby nature was also reflected in the importance of private gardens [120, 177], but also greenery at work [184].

It is important to think carefully about the choice of vegetation and the level of biodiversity, and once again also in relation to the target user group. Flowering plants can be seen as too stimulating for some, but not for others. Seasonal changes matter in how areas are perceived, and benefits of green spaces may differ between seasons. Green areas are not only beneficial in spring and summer, but can also be beneficial in the autumn and winter.

Participants seemed to prefer a certain level of human involvement in green areas. Managed meadows or grassland appear to provide better outcomes, whereas mixed results on this aspect were found for forests. Shrubland, on the other hand, especially in the presence of highly connected patches produced mainly negative associations with mental health outcomes that would be worth avoiding.

Last, a synergy in beneficial effects may occur when combining green space with blue space, such as a lake or the sound of a fountain or a brook [137, 138].

# 6. Concluding remarks

The Covid-19 pandemic has not only confirmed the importance of green space in the city for getting away from daily hassles or for providing an opportunity to socialize with friends or be physically active, it has also reminded us of the importance of the views from our windows as in regions with strict lock-down green space could only be viewed through the window. The outcomes of the present report confirm the results of previous systematic reviews indicating that green space is beneficial for mental health [57-63], not only of designated green space types such as the park but also and in general street greenery. It is, therefore, not only important to think of more commonly defines urban green spaces, such as parks or forests, but also to value and consider the daily and often unintentional micro-restorative experiences [233] people can enjoy from trees and grass within residential, commercial, or business areas. In other words, the review indicated that all urban and peri-urban green types and characteristics matter for mental health and wellbeing.

Even though rather consistent benefits of green spaces were reported, the direct comparisons of the different green space types and characteristics rendered very mixed results. The largest group of studies focussed on either the park (and the urban green space) or the forest. Contradictory effects were found in direct comparisons between the two, with superior effects for the forest than the park on short-term mental health outcomes, as reported in most experimental studies and the exact opposite in three cross-sectional studies on long-term mental health outcomes. At least two explanations can be provided for the heterogeneity in these comparison results; a the need for a better measurement of actual exposure; and/or diversity in user characteristics and needs as well as microclimatic circumstances and different cultural representations.

An important distinction was found between short-term and long-term mental health benefits provided by the park and the forest. This, once again, illustrates the complexity of the pathway linking exposure to green space with mental health benefits [16, 56]. It is still unknown whether these differences in effects were due to idiosyncratic elements in the research design (i.e., experimental studies looking at effects of a single exposure, whereas long-term benefits may depend on an accumulation of exposures) or whether these green space types really serve different purposes in terms of mental health outcomes. If long-term benefits depend on actual exposure, and more specifically, the internal absorbed dose [56] there is a need to know more about this. Experience has especially received little attention in the existing evidence base [56]. This information cannot be retrieved from cross-sectional studies only looking at residential availability of green, and neither from experimental studies looking at effect of a single visit. Longitudinal



studies are consequently necessary to further explore the relation between exposure and mental health outcomes, but also to gain a better understanding of when people explicitly choose to go to an urban green space, what they are doing there, and what experiences they are having (e.g., [56]).

The systematic review did not point at one particular green space type or characteristic that is best, or a gold standard that works best for everyone, everywhere, and at every time. Instead, there was high heterogeneity in outcomes between different green space types and characteristics. Heterogeneity may be explained in terms of differences in exposure duration between different green space types and characteristics, but also in terms of differences in experiences. Not all studies in the present review distinguished between different population types, but those that did look at either a specific subsample of the population (e.g., elderly or children) or included individual-level factors such as gender or socioeconomic status, often pointed at different effects for different target groups. This may signal a need for variety in green space types to capture all potential users, with different needs and undertaking varied activities rather than there being one particular standardized solution for each city. What adds complexity is that these variations not only occur between individuals, but also within a single person. On a bad day, a person may benefit more from a specific green space or quality than on a good day. In addition, factors such as geographical location, different cultural perspectives, and climatic conditions may also influence how specific green space types and qualities influence mental health. Here also lies a potential challenge as climate change is not only affecting biodiversity in the cities, but it is also influencing the microclimate of different urban areas within a single city.

The studies included in the review were highly heterogenous in terms of objectives, theoretical frameworks, covariate data, target population, and research methods. Previous systematic reviews have indicated that this diversity makes drawing solid conclusions difficult [8, 13, 16, 59-61, 63, 72-74]. This was also the case for the present review. At the same time, the present review has indicated that when trying to identify benefits of specific green space types and specific green space characteristics on mental health, this diversity in outcomes and user characteristics may not necessarily be a weakness but, instead, a prerequisite for gaining a better understanding on how exactly different green space types and characteristics influence mental health and wellbeing and how differences between individuals and between different contexts (e.g., geographical location, climate, season). However, there needs to be a more systematic way to study this, with more longitudinal studies. One way to go about this is to purposefully address this heterogeneity in the research methodology. For instance, by enabling a direct comparison not only between different green space types and characteristics, but also between different users (e.g., age, mental health status), different activities (e.g., active versus passive activities), or different locations (geographical locations, or in areas with different population densities), or different seasons, or including different cross-cultural perspectives. Future research could shed light on these factors important to understand the pathway from green space exposure to mental health. Especially viable in this respect are studies employing ecological momentary assessment or experience sampling methodologies, as these methods enable longitudinal designs and the sampling of everyday experiences, and allow for time budgeting (extracting total time spent on e.g., a certain activity or in a specific environment based on multiple random momentary assessment) that can shed light on actual exposure and experience [234].

The present review has once again established a general beneficial relation between green space and mental health, an association that seems to hold for most green space types. Comparisons between different green space types have nonetheless revealed heterogeneity in outcomes that points at potential underlying pathways that deserve further attention. Two main venues for future research are proposed: a better assessment of actual exposure, and of the role of individual experiences within specific green spaces.

Gaining knowledge on how actual exposure to- and experience with- specific natural features can help improve and maintain mental health will enhance the understanding of the exact types, qualities, and variety of green spaces. An understanding increasingly required to tailor urban green space design not only to the specific needs and preferences of the urban and peri-urban dwellers, but also to the increasing threats posed by urbanisation and climate change.

## 7. References

- 1. Taylor, L., D.F.J.L. Hochuli, and U. Planning, *Defining greenspace: Multiple uses across multiple disciplines.* 2017. **158**: p. 25-38.
- 2. Grellier, J., et al., *BlueHealth: a study programme protocol for mapping and quantifying the potential benefits to public health and well-being from Europe's blue spaces.* 2017. **7**(6): p. e016188.
- 3. WHO. *Mental health: a state of well-being.* 2014; Available from: <u>http://www.who.int/features/factfiles/mental\_health/en/.</u>
- Linton, M.-J., P. Dieppe, and A. Medina-Lara, *Review of 99 self-report measures for assessing well-being in adults: exploring dimensions of well-being and developments over time.* BMJ open, 2016.
   6(7): p. e010641.
- 5. Assessment, M.E., *Ecosystems and human well-being*. Vol. 5. 2005: Island press Washington, DC:.
- 6. Antonovsky, A., *The salutogenic model as a theory to guide health promotion*. Health promotion international, 1996. **11**(1): p. 11-18.
- 7. Nations, U. *Convention on biological diversity*. 1992; Available from: <u>https://www.cbd.int/doc/</u>legal/cbd-en.pdf.
- 8. Frumkin, H., et al., *Nature contact and human health: A research agenda*. Environmental Health Perspectives, 2017. **125**(7): p. 075001.
- 9. van den Bosch, M. and Å.O.J.E.r. Sang, Urban natural environments as nature-based solutions for improved public health–A systematic review of reviews. 2017. **158**: p. 373-384.
- 10. Zürcher, N. and M.-B. Andreucci, *Growing the Urban Forest: Our Practitioners' Perspective*, in *The Urban Forest*. 2017, Springer. p. 315-346.
- 11. Bhugra, D. and A. Mastrogianni, *Globalisation and mental disorders: overview with relation to depression.* The British Journal of Psychiatry, 2004. **184**(1): p. 10-20.
- 12. Engemann, K., et al., *Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood.* Proceedings of the national academy of sciences, 2019. **116**(11): p. 5188-5193.
- 13. Twohig-Bennett, C. and A. Jones, *The health benefits of the great outdoors: A systematic review and meta-analysis of greenspace exposure and health outcomes.* Environmental research, 2018. **166**: p. 628-637.
- 14. WHO, *"Healthy cities"* 2016.
- 15. Rousseau, S. and N. Deschacht, *Public Awareness of Nature and the Environment During the COVID-19 Crisis*. Environmental and Resource Economics, 2020: p. 1-11.
- 16. Hartig, T., et al., *Nature and health*. Annual review of public health, 2014. **35**: p. 207-228.
- 17. Ulrich, R.S., et al., *Stress recovery during exposure to natural and urban environments.* 1991. **11**(3): p. 201-230.
- Kaplan, S.J.J.o.e.p., *The restorative benefits of nature: Toward an integrative framework*. 1995.
   **15**(3): p. 169-182.
- 19. Kellert, S.R. and E.O. Wilson, *The biophilia hypothesis*. 1995: Island Press.
- 20. Ulrich, R.S., *Biophilia, biophobia, and natural landscapes.* The biophilia hypothesis, 1993. **7**: p. 73-137.
- 21. Schuch, F., et al., *Physical activity and sedentary behavior in people with major depressive disorder: a systematic review and meta-analysis.* Journal of affective disorders, 2017. **210**: p. 139-150.
- 22. Rosenbaum, S., A. Tiedemann, and P.B. Ward, *Meta-analysis physical activity interventions for people with mental illness: a systematic review and meta-analysis.* J Clin Psychiatry, 2014. **75**(0): p. 1-11.
- 23. Mammen, G. and G. Faulkner, *Physical activity and the prevention of depression: a systematic review of prospective studies*. American journal of preventive medicine, 2013. **45**(5): p. 649-657.
- 24. Mitchell, R., *Is physical activity in natural environments better for mental health than physical activity in other environments?* Soc Sci Med, 2013. **91**: p. 130-4.

- Barton, J., M. Griffin, and J. Pretty, *Exercise-, nature-and socially interactive-based initiatives improve mood and self-esteem in the clinical population.* Perspectives in public health, 2012.
   132(2): p. 89-96.
- 26. Pretty, J., et al., *The mental and physical health outcomes of green exercise*. International journal of environmental health research, 2005. **15**(5): p. 319-337.
- 27. Barton, J., J.J.E.s. Pretty, and technology, *What is the best dose of nature and green exercise for improving mental health? A multi-study analysis.* 2010. **44**(10): p. 3947-3955.
- 28. van den Berg, M.M., et al., *Do physical activity, social cohesion, and loneliness mediate the association between time spent visiting green space and mental health?* Environment and behavior, 2019. **51**(2): p. 144-166.
- 29. Richardson, E.A., et al., *Role of physical activity in the relationship between urban green space and health.* Public health, 2013. **127**(4): p. 318-324.
- 30. Maas, J., et al., *Physical activity as a possible mechanism behind the relationship between green space and health: a multilevel analysis.* BMC public health, 2008. **8**(1): p. 206.
- 31. Klompmaker, J.O., et al., *Green space definition affects associations of green space with overweight and physical activity.* Environmental research, 2018. **160**: p. 531-540.
- 32. White, M., et al., *Recreational physical activity in natural environments and implications for health: A population based cross-sectional study in England.* Preventive Medicine, 2016. **91**: p. 383-388.
- 33. De Vries, S., et al., *Streetscape greenery and health: stress, social cohesion and physical activity as mediators.* Social science & medicine, 2013. **94**: p. 26-33.
- 34. Sugiyama, T., et al., Associations of neighbourhood greenness with physical and mental health: do walking, social coherence and local social interaction explain the relationships? Journal of Epidemiology & Community Health, 2008. **62**(5): p. e9-e9.
- 35. Schipperijn, J., et al., *Associations between physical activity and characteristics of urban green space*. Urban Forestry & Urban Greening, 2013. **12**(1): p. 109-116.
- 36. Dadvand, P., et al., *Use of green spaces, self-satisfaction and social contacts in adolescents: A population-based CASPIAN-V study.* Environ Res, 2019. **168**: p. 171-177.
- 37. Jennings, V. and O. Bamkole, *The relationship between social cohesion and urban green space: An avenue for health promotion.* International journal of environmental research and public health, 2019. **16**(3): p. 452.
- 38. Peters, K., B. Elands, and A. Buijs, *Social interactions in urban parks: stimulating social cohesion?* Urban forestry & Urban greening, 2010. **9**(2): p. 93-100.
- 39. Holt-Lunstad, J., T.B. Smith, and J.B.J.P.m. Layton, *Social relationships and mortality risk: a metaanalytic review.* 2010. **7**(7): p. e1000316.
- 40. Sun, Z. and D. Zhu, *Exposure to outdoor air pollution and its human health outcomes: A scoping review.* PloS one, 2019. **14**(5).
- 41. Beelen, R., et al., *Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project.* The Lancet, 2014. **383**(9919): p. 785-795.
- 42. Klompmaker, J.O., et al., *Associations of combined exposures to surrounding green, air pollution and traffic noise on mental health.* Environment international, 2019. **129**: p. 525-537.
- 43. Buoli, M., et al., *Is there a link between air pollution and mental disorders?* Environment international, 2018. **118**: p. 154-168.
- 44. Zock, J.-P., et al., *The impact of social capital, land use, air pollution and noise on individual morbidity in Dutch neighbourhoods*. Environment international, 2018. **121**: p. 453-460.
- 45. Gatto, N.M., et al., *Components of air pollution and cognitive function in middle-aged and older adults in Los Angeles.* Neurotoxicology, 2014. **40**: p. 1-7.
- 46. Dadvand, P., et al., *Green spaces and cognitive development in primary schoolchildren.* Proceedings of the National Academy of Sciences, 2015. **112**(26): p. 7937-7942.
- 47. Von Lindern, E., T. Hartig, and P. Lercher, *Traffic-related exposures, constrained restoration, and health in the residential context.* Health & place, 2016. **39**: p. 92-100.



- 48. Cariñanos, P. and M. Casares-Porcel, Urban green zones and related pollen allergy: A review. Some guidelines for designing spaces with low allergy impact. Landscape and urban planning, 2011.
  101(3): p. 205-214.
- 49. Kuo, M., *How might contact with nature promote human health? Promising mechanisms and a possible central pathway.* Frontiers in psychology, 2015. **6**: p. 1093.
- 50. Flandroy, L., et al., *The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems.* Science of the total environment, 2018. **627**: p. 1018-1038.
- 51. Roe, J. and P. Aspinall, *The restorative benefits of walking in urban and rural settings in adults with good and poor mental health.* Health & place, 2011. **17**(1): p. 103-113.
- 52. Beute, F. and Y.A. de Kort, *The natural context of wellbeing: Ecological momentary assessment of the influence of nature and daylight on affect and stress for individuals with depression levels varying from none to clinical.* Health & place, 2018. **49**: p. 7-18.
- 53. Ottosson, J. and P. Grahn, *The role of natural settings in crisis rehabilitation: how does the level of crisis influence the response to experiences of nature with regard to measures of rehabilitation?* Landscape research, 2008. **33**(1): p. 51-70.
- 54. Astell-Burt, T., R. Mitchell, and T. Hartig, *The association between green space and mental health varies across the lifecourse. A longitudinal study.* J Epidemiol Community Health, 2014. **68**(6): p. 578-583.
- 55. Mitchell, R. and F. Popham, *Effect of exposure to natural environment on health inequalities: an observational population study.* The lancet, 2008. **372**(9650): p. 1655-1660.
- 56. Bratman, G.N., et al., *Nature and mental health: An ecosystem service perspective.* 2019. **5**(7): p. eaax0903.
- 57. Tillmann, S., et al., *Mental health benefits of interactions with nature in children and teenagers: A systematic review*. J Epidemiol Community Health, 2018. **72**(10): p. 958-966.
- 58. Gascon, M., et al., *Mental health benefits of long-term exposure to residential green and blue spaces: a systematic review*. International Journal of Environmental Research & Public Health [Electronic Resource], 2015. **12**(4): p. 4354-79.
- 59. Van den Berg, M., et al., *Health benefits of green spaces in the living environment: A systematic review of epidemiological studies.* Urban Forestry & Urban Greening, 2015. **14**(4): p. 806-816.
- 60. Houlden, V., et al., *The relationship between greenspace and the mental wellbeing of adults: A systematic review.* PLoS ONE [Electronic Resource], 2018. **13**(9): p. e0203000.
- 61. Bowler, D.E., et al., *A systematic review of evidence for the added benefits to health of exposure to natural environments.* BMC public health, 2010. **10**(1): p. 456.
- 62. Thompson Coon, J., et al., *Does participating in physical activity in outdoor natural environments have a greater effect on physical and mental wellbeing than physical activity indoors? A systematic review*. Environmental science & technology, 2011. **45**(5): p. 1761-1772.
- 63. Bratman, G.N., J.P. Hamilton, and G.C. Daily, *The impacts of nature experience on human cognitive function and mental health.* Annals of the New York Academy of Sciences, 2012. **1249**(1): p. 118-136.
- 64. Aerts, R., O. Honnay, and A. Van Nieuwenhuyse, *Biodiversity and human health: mechanisms and evidence of the positive health effects of diversity in nature and green spaces.* British Medical Bulletin, 2018. **127**(1): p. 5-22.
- 65. Meredith, G.R., et al., *Minimum Time Dose in Nature to Positively Impact the Mental Health of College-Aged Students, and How to Measure It: A Scoping Review.* Frontiers in psychology, 2020. **10**: p. 2942.
- 66. Kabisch, N., S. Qureshi, and D. Haase, *Human–environment interactions in urban green spaces—A systematic review of contemporary issues and prospects for future research.* Environmental Impact Assessment Review, 2015. **50**: p. 25-34.
- 67. Tzoulas, K., et al., *Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review.* Landscape and urban planning, 2007. **81**(3): p. 167-178.

- 68. McCormack, G.R., et al., *Characteristics of urban parks associated with park use and physical activity: A review of qualitative research.* Health & place, 2010. **16**(4): p. 712-726.
- 69. Konijnendijk, C.C., et al., *Benefits of urban parks.* A systematic review. A Report for IFPRA, Copenhagen & Alnarp, 2013.
- 70. Dzhambov, A.M. and D.D. Dimitrova, *Urban green spaces' effectiveness as a psychological buffer for the negative health impact of noise pollution: a systematic review.* Noise and Health, 2014. **16**(70): p. 157.
- 71. Bowler, D.E., et al., *Urban greening to cool towns and cities: A systematic review of the empirical evidence.* Landscape and urban planning, 2010. **97**(3): p. 147-155.
- 72. Tillmann, S., A.F. Clark, and J.A. Gilliland, *Children and Nature: Linking Accessibility of Natural Environments and Children's Health-Related Quality of Life*. Int J Environ Res Public Health, 2018. **15**(6): p. 25.
- 73. Moens, M.A., et al., A Dose of Nature: Two three-level meta-analyses of the beneficial effects of exposure to nature on children's self-regulation. 2019: p. 101326.
- 74. Gascon, M., et al., *Residential green spaces and mortality: a systematic review.* Environment international, 2016. **86**: p. 60-67.
- 75. Higgins, J.P. and S. Green, *Cochrane handbook for systematic reviews of interventions*. Vol. 4. 2011: John Wiley & Sons.
- 76. Keniger, L.E., et al., *What are the benefits of interacting with nature?* 2013. **10**(3): p. 913-935.
- 77. Goldberg, D.P. and V.F. Hillier, *A scaled version of the General Health Questionnaire*. Psychological medicine, 1979. **9**(1): p. 139-145.
- 78. Tennant, R., et al., *The Warwick-Edinburgh mental well-being scale (WEMWBS): development and UK validation*. Health and Quality of life Outcomes, 2007. **5**(1): p. 63.
- 79. Watson, D. and L.A. Clark, *The PANAS-X: Manual for the positive and negative affect schedule-expanded form.* 1999.
- 80. Ware Jr, J.E. and C.D. Sherbourne, *The MOS 36-item short-form health survey (SF-36): I. Conceptual framework and item selection.* Medical care, 1992: p. 473-483.
- 81. Korpela, K.M., et al., *Determinants of restorative experiences in everyday favorite places*. Health & place, 2008. **14**(4): p. 636-652.
- 82. Radloff, L.S., *The CES-D scale: A self-report depression scale for research in the general population.* Applied psychological measurement, 1977. **1**(3): p. 385-401.
- 83. Cohen, S., T. Kamarck, and R. Mermelstein, *A global measure of perceived stress*. Journal of health and social behavior, 1983: p. 385-396.
- 84. Diener, E., et al., *The satisfaction with life scale*. Journal of personality assessment, 1985. **49**(1): p. 71-75.
- 85. Group, W., *The World Health Organization quality of life assessment (WHOQOL): position paper from the World Health Organization.* Social science & medicine, 1995. **41**(10): p. 1403-1409.
- 86. Goodman, R., *The Strengths and Difficulties Questionnaire: a research note.* Journal of child psychology and psychiatry, 1997. **38**(5): p. 581-586.
- 87. Sianoja, M., et al., *Enhancing daily well-being at work through lunchtime park walks and relaxation exercises: Recovery experiences as mediators.* J Occup Health Psychol, 2018. **23**(3): p. 428-442.
- 88. Neale, C., et al., *The Aging Urban Brain: Analyzing Outdoor Physical Activity Using the Emotiv Affectiv Suite in Older People.* J Urban Health, 2017. **94**(6): p. 869-880.
- 89. Aspinall, P., et al., *The urban brain: analysing outdoor physical activity with mobile EEG.* BJSM online, 2015. **49**(4): p. 272-6.
- 90. Coventry, P.A., et al., *The mental health benefits of purposeful activities in public green spaces in urban and semi-urban neighbourhoods: A mixed-methods pilot and proof of concept study.* Int. J. Environ. Res. Public Health, 2019. **16**(15).
- 91. Yoshida, A., et al., *Evaluation of effect of tree canopy on thermal environment, thermal sensation, and mental state.* Urban Clim., 2015. **14**: p. 240-250.



- 92. Carrus, G., et al., *Go greener, feel better? The positive effects of biodiversity on the well-being of individuals visiting urban and peri-urban green areas.* Landsc. Urban Plann., 2015. **134**: p. 221-228.
- 93. Chang, Y., et al., *Measuring biophysical and psychological stress levels following visitation to three locations with differing levels of nature.* J. Visualized Exp., 2019. **2019**(148).
- 94. Orsega-Smith, E., et al., *The interaction of stress and park use on psycho-physiological health in older adults.* Journal of Leisure Research, 2004. **36**(2): p. 232-256.
- 95. Hull, R.B. and S.E. Michael, *Nature-based Recreation, mood change, and stress restoration.* Leisure Sciences, 1995. **17**(1): p. 1-14.
- 96. Li, D., et al., Subtypes of park use and self-reported psychological benefits among older adults: A multilevel latent class analysis approach. Landsc. Urban Plann., 2019. **190**.
- 97. Grazuleviciene, R., et al., *Tracking Restoration of Park and Urban Street Settings in Coronary Artery Disease Patients.* Int J Environ Res Public Health, 2016. **13**(6): p. 31.
- 98. Gidlow, C.J., et al., *Where to put your best foot forward: Psycho-physiological responses to walking in natural and urban environments.* Journal of Environmental Psychology, 2016. **45**: p. 22-29.
- 99. Mokhtar, D., N.A. Abdul Aziz, and M. Mariapan, *Physiological and psychological health benefits of urban green space in Kuala Lumpur: A comparison between Taman Botani Perdana and Jalan Bukit Bintang.* Pertanika J. Soc. Sci. Humanit., 2018. **26**(3): p. 2101-2114.
- 100. Wang, X., et al., *Stress recovery and restorative effects of viewing different urban park scenes in Shanghai, China.* Urban For. Urban Greening, 2016. **15**: p. 112-122.
- 101. Yuen, H.K. and G.R. Jenkins, *Factors associated with changes in subjective well-being immediately after urban park visit.* Int J Environ Health Res, 2019: p. 1-12.
- 102. Guéguen, N. and J. Stefan, *"Green Altruism": Short Immersion in Natural Green Environments and Helping Behavior*. Environ. Behav., 2016. **48**(2): p. 324-342.
- 103. Wallner, P., et al., *Reloading Pupils' Batteries: Impact of Green Spaces on Cognition and Wellbeing.* Int J Environ Res Public Health, 2018. **15**(6): p. 08.
- McAllister, E., N. Bhullar, and N.S. Schutte, Into the Woods or a Stroll in the Park: How Virtual Contact with Nature Impacts Positive and Negative Affect. Int J Environ Res Public Health, 2017. 14(7): p. 14.
- 105. Zhang, S., et al., *The Influence of Audio-Visual Interactions on Psychological Responses of Young People in Urban Green Areas: A Case Study in Two Parks in China*. Int J Environ Res Public Health, 2019. **16**(10): p. 24.
- 106. Benfield, J.A., et al., *A laboratory study of the psychological impact of light pollution in national parks*. J. Environ. Psychol., 2018. **57**: p. 67-72.
- 107. Song, C., et al., *Physiological and psychological effects of walking on young males in urban parks in winter*. J Physiol Anthropol, 2013. **32**: p. 18.
- 108. Song, C., et al., *Physiological and psychological responses of young males during spring-time walks in urban parks.* J Physiol Anthropol, 2014. **33**: p. 8.
- 109. Song, C., et al., *Physiological and Psychological Effects of a Walk in Urban Parks in Fall*. Int J Environ Res Public Health, 2015. **12**(11): p. 14216-28.
- 110. Song, C., et al., *Effects of Walking in a Forest on Young Women*. Int J Environ Res Public Health, 2019. **16**(2): p. 15.
- 111. Tyrväinen, L., et al., *The influence of urban green environments on stress relief measures: A field experiment.* J. Environ. Psychol., 2014. **38**: p. 1-9.
- 112. Ojala, A., et al., *Restorative effects of urban green environments and the role of urban-nature orientedness and noise sensitivity: A field experiment.* Health Place, 2019. **55**: p. 59-70.
- 113. Lanki, T., et al., *Acute effects of visits to urban green environments on cardiovascular physiology in women: A field experiment.* Environ Res, 2017. **159**: p. 176-185.
- 114. Ewert, A. and Y. Chang, *Levels of nature and stress response*. Behavioral Sciences, 2018. **8**(5).
- 115. Detweiler, M.B., et al., *Scheduled medications and falls in dementia patients utilizing a wander garden.* Am J Alzheimers Dis Other Demen, 2009. **24**(4): p. 322-32.

- 116. Detweiler, M.B., et al., *Does a wander garden influence inappropriate behaviors in dementia residents?* Am J Alzheimers Dis Other Demen, 2008. **23**(1): p. 31-45.
- 117. Cordoza, M., et al., *Impact of Nurses Taking Daily Work Breaks in a Hospital Garden on Burnout.* Am J Crit Care, 2018. **27**(6): p. 508-512.
- 118. Zhang, Y., et al., *Physiological Responses of the Youth Viewing a Japanese Garden*. Conf Proc IEEE Eng Med Biol Soc, 2018. **2018**: p. 1550-1553.
- 119. Lee, J., *Experimental Study on the Health Benefits of Garden Landscape.* Int J Environ Res Public Health, 2017. **14**(7): p. 24.
- 120. Korn, A., et al., *Physical and Mental Health Impacts of Household Gardens in an Urban Slum in Lima, Peru.* Int J Environ Res Public Health, 2018. **15**(8): p. 15.
- 121. Goto, S., et al., *The Positive Effects of Viewing Gardens for Persons with Dementia*. J Alzheimers Dis, 2018. **66**(4): p. 1705-1720.
- 122. Elsadek, M., et al., *Cross-cultural comparison of physiological and psychological responses to different garden styles.* Urban For. Urban Greening, 2019. **38**: p. 74-83.
- 123. Lee, J., et al., *Restorative effects of viewing real forest landscapes, based on a comparison with urban landscapes.* Scandinavian Journal of Forest Research, 2009. **24**(3): p. 227-234.
- 124. Joung, D., et al., *The Prefrontal Cortex Activity and Psychological Effects of Viewing Forest Landscapes in Autumn Season*. Int J Environ Res Public Health, 2015. **12**(7): p. 7235-43.
- 125. Takayama, N., et al., *Emotional, restorative and vitalizing effects of forest and urban environments at four sites in Japan*. Int J Environ Res Public Health, 2014. **11**(7): p. 7207-30.
- 126. Morita, E., et al., *Psychological effects of forest environments on healthy adults: Shinrin-yoku* (*forest-air bathing, walking*) as a possible method of stress reduction. Public Health, 2007. **121**(1): p. 54-63.
- 127. Moyle, W., et al., *Effectiveness of a Virtual Reality Forest on People With Dementia: A Mixed Methods Pilot Study.* Gerontologist, 2018. **58**(3): p. 478-487.
- 128. Lee, J., et al., *Effect of forest bathing on physiological and psychological responses in young Japanese male subjects.* Public Health, 2011. **125**(2): p. 93-100.
- 129. Tsunetsugu, Y., et al., *Physiological and psychological effects of viewing urban forest landscapes assessed by multiple measurements.* Landscape and Urban Planning, 2013. **113**: p. 90-93.
- 130. Martens, D., H. Gutscher, and N. Bauer, *Walking in "wild" and "tended" urban forests: The impact on psychological well-being.* Journal of Environmental Psychology, 2011. **31**(1): p. 36-44.
- 131. Takayama, N., et al., *The effect of slight thinning of managed coniferous forest on landscape appreciation and psychological restoration*. Prog. Earth Planet. Sci., 2017. **4**(1).
- 132. Tsutsumi, M., et al., *Individual reactions to viewing preferred video representations of the natural environment: A comparison of mental and physical reactions.* Japan Journal of Nursing Science: JJNS, 2017. **14**(1): p. 3-12.
- 133. Yu, C.P., H.Y. Lee, and X.Y. Luo, *The effect of virtual reality forest and urban environments on physiological and psychological responses.* Urban For. Urban Greening, 2018. **35**: p. 106-114.
- 134. Song, C., et al., *Effect of forest walking on autonomic nervous system activity in middle-aged hypertensive individuals: a pilot study.* Int J Environ Res Public Health, 2015. **12**(3): p. 2687-99.
- 135. Song, C., et al., *Psychological Benefits of Walking through Forest Areas.* Int J Environ Res Public Health, 2018. **15**(12): p. 10.
- 136. Stigsdotter, U.K., et al., *It is not all bad for the grey city A crossover study on physiological and psychological restoration in a forest and an urban environment*. Health Place, 2017. **46**: p. 145-154.
- 137. Sonntag-Öström, E., et al., *Restorative effects of visits to urban and forest environments in patients with exhaustion disorder*. Urban For. Urban Greening, 2014. **13**(2): p. 344-354.
- 138. Jo, H., et al., *Physiological and psychological effects of forest and urban sounds using highresolution sound sources.* Int. J. Environ. Res. Public Health, 2019. **16**(15).
- 139. Chiang, Y.C., D. Li, and H.A. Jane, *Wild or tended nature? The effects of landscape location and vegetation density on physiological and psychological responses.* Landsc. Urban Plann., 2017. **167**: p. 72-83.



- 140. Toda, M., et al., *Effects of woodland walking on salivary stress markers cortisol and chromogranin A.* Complement Ther Med, 2013. **21**(1): p. 29-34.
- 141. Greenwood, A. and B. Gatersleben, *Let's go outside! Environmental restoration amongst adolescents and the impact of friends and phones.* J. Environ. Psychol., 2016. **48**: p. 131-139.
- 142. Rogerson, M., et al., *A comparison of four typical green exercise environments and prediction of psychological health outcomes.* Perspect Public Health, 2016. **136**(3): p. 171-80.
- 143. Arnberger, A., et al., *Health-related effects of short stays at mountain meadows, a river and an urban site—Results from a field experiment.* Int. J. Environ. Res. Public Health, 2018. **15**(12).
- 144. Ho, S.-H., C.J. Lin, and F.-L. Kuo, *The effects of gardening on quality of life in people with stroke*. Work, 2016. **54**(3): p. 557-67.
- 145. Paraskevopoulou, A.T., et al., *The impact of seasonal colour change in planting on patients with psychotic disorders using biosensors*. Urban For. Urban Greening, 2018. **36**: p. 50-56.
- 146. Elsadek, M., et al., *The influence of urban roadside trees and their physical environment on stress relief measures: A field experiment in Shanghai.* Urban For. Urban Greening, 2019. **42**: p. 51-60.
- 147. Gathright, J., Y. Yamada, and M. Morita, *Comparison of the physiological and psychological benefits of tree and tower climbing*. Urban Forestry and Urban Greening, 2006. **5**(3): p. 141-149.
- 148. Marselle, M.R., et al., *Does perceived restorativeness mediate the effects of perceived biodiversity and perceived naturalness on emotional well-being following group walks in nature?* J. Environ. Psychol., 2016. **46**: p. 217-232.
- 149. Chang, K.G., et al., *The effect of biodiversity on green space users' wellbeing-An empirical investigation using physiological evidence*. Sustainability, 2016. **8**(10).
- 150. Kondo, M.C., et al., *The impact of green stormwater infrastructure installation on surrounding health and safety.* Am J Public Health, 2015. **105**(3): p. e114-21.
- 151. Martensson, F., et al., *Outdoor environmental assessment of attention promoting settings for preschool children*. Health Place, 2009. **15**(4): p. 1149-57.
- 152. Olszewska-Guizzo, A.A., T.O. Paiva, and F. Barbosa, *Effects of 3D Contemplative Landscape Videos* on Brain Activity in a Passive Exposure EEG Experiment. Front Psychiatr, 2018. **9**: p. 317.
- 153. Gatersleben, B. and M. Andrews, *When walking in nature is not restorative-The role of prospect and refuge*. Health and Place, 2013. **20**: p. 91-101.
- 154. van Dillen, S.M.E., et al., *Greenspace in urban neighbourhoods and residents' health: adding quality to quantity.* J Epidemiol Community Health, 2012. **66**(6): p. e8.
- 155. Coldwell, D.F. and K.L. Evans, *Visits to urban green-space and the countryside associate with different components of mental well-being and are better predictors than perceived or actual local urbanisation intensity.* Landsc. Urban Plann., 2018. **175**: p. 114-122.
- 156. Wyles, K.J., et al., *Are Some Natural Environments More Psychologically Beneficial Than Others? The Importance of Type and Quality on Connectedness to Nature and Psychological Restoration.* Environ. Behav., 2019. **51**(2): p. 111-143.
- 157. Ma, B., et al., *Effects of urban green spaces on residents' well-being*. Environ. Dev. Sustainability, 2018: p. 1-17.
- 158. Hadavi, S., Direct and Indirect Effects of the Physical Aspects of the Environment on Mental Well-Being. Environ. Behav., 2017. **49**(10): p. 1071-1104.
- 159. Krekel, C., J. Kolbe, and H. Wüstemann, *The greener, the happier? The effect of urban land use on residential well-being.* Ecol. Econ., 2016. **121**: p. 117-127.
- 160. Kim, J.-H., C. Lee, and W. Sohn, *Urban Natural Environments, Obesity, and Health-Related Quality of Life among Hispanic Children Living in Inner-City Neighborhoods.* Int J Environ Res Public Health, 2016. **13**(1): p. 12.
- 161. Marselle, M.R., K.N. Irvine, and S.L. Warber, *Walking for well-being: are group walks in certain types of natural environments better for well-being than group walks in urban environments?* Int J Environ Res Public Health, 2013. **10**(11): p. 5603-28.
- 162. Korpela, K.M., et al., *Favorite green, waterside and urban environments, restorative experiences and perceived health in Finland.* Health Promotion International, 2010. **25**(2): p. 200-9.

- 163. White, M.P., et al., *Feelings of restoration from recent nature visits*. Journal of Environmental Psychology, 2013. **35**: p. 40-51.
- 164. Saw, L.E., F.K.S. Lim, and L.R. Carrasco, *The Relationship between Natural Park Usage and Happiness Does Not Hold in a Tropical City-State.* PLoS ONE, 2015. **10**(7): p. e0133781.
- 165. Wood, L., et al., *Public green spaces and positive mental health investigating the relationship between access, quantity and types of parks and mental wellbeing.* Health Place, 2017. **48**: p. 63-71.
- 166. Balseviciene, B., et al., *Impact of residential greenness on preschool children's emotional and behavioral problems*. Int J Environ Res Public Health, 2014. **11**(7): p. 6757-70.
- 167. Zhang, C.J.P., et al., *Objectively-Measured Neighbourhood Attributes as Correlates and Moderators of Quality of Life in Older Adults with Different Living Arrangements: The ALECS Cross-Sectional Study.* Int J Environ Res Public Health, 2019. **16**(5): p. 10.
- 168. Bojorquez, I. and L. Ojeda-Revah, *Urban public parks and mental health in adult women: Mediating and moderating factors.* Int J Soc Psychiatry, 2018. **64**(7): p. 637-646.
- 169. Larson, L.R., V. Jennings, and S.A. Cloutier, *Public Parks and Wellbeing in Urban Areas of the United States*. PLoS ONE, 2016. **11**(4): p. e0153211.
- 170. Benita, F., G. Bansal, and B. Tunçer, *Public spaces and happiness: Evidence from a large-scale field experiment.* Health Place, 2019. **56**: p. 9-18.
- 171. Sugiyama, T., et al., *Can neighborhood green space mitigate health inequalities? A study of socioeconomic status and mental health.* Health Place, 2016. **38**: p. 16-21.
- 172. Hansmann, R., S.M. Hug, and K. Seeland, *Restoration and stress relief through physical activities in forests and parks*. Urban Forestry and Urban Greening, 2007. **6**(4): p. 213-225.
- 173. Scott, J.T., et al., *Natural Environments Near Schools: Potential Benefits for Socio-Emotional and Behavioral Development in Early Childhood.* Am J Community Psychol, 2018. **62**(3-4): p. 419-432.
- 174. Zhang, L. and P.Y. Tan, Associations between Urban Green Spaces and Health are Dependent on the Analytical Scale and How Urban Green Spaces are Measured. Int J Environ Res Public Health, 2019.
   16(4): p. 16.
- 175. Ayala-Azcárraga, C., D. Diaz, and L. Zambrano, *Characteristics of urban parks and their relation to user well-being.* Landsc. Urban Plann., 2019. **189**: p. 27-35.
- 176. Henderson-Wilson, C., et al., *Perceived Health Benefits and Willingness to Pay for Parks by Park Users: Quantitative and Qualitative Research.* Int J Environ Res Public Health, 2017. **14**(5): p. 15.
- 177. Burton, E., L. Mitchell, and C. Stride, *Bed of roses? The role of garden space in older people's wellbeing.* Proc. Inst. Civ. Eng.: Urban Des. Plann., 2015. **168**(4): p. 164-173.
- 178. Kohlleppel, T., J.C. Bradley, and S. Jacob, *A walk through the garden: Can a visit to a botanic garden reduce stress?* HortTechnology, 2002. **12**(3): p. 489-492.
- 179. Tsai, W.-L., et al., *Relationships between Characteristics of Urban Green Land Cover and Mental Health in U.S. Metropolitan Areas.* Int J Environ Res Public Health, 2018. **15**(2): p. 14.
- 180. Van Aart, C.J.C., et al., *Residential landscape as a predictor of psychosocial stress in the life course from childhood to adolescence*. Environ Int, 2018. **120**: p. 456-463.
- 181. Wu, J. and L. Jackson, *Inverse relationship between urban green space and childhood autism in California elementary school districts*. Environ Int, 2017. **107**: p. 140-146.
- 182. Song, H., et al., Association between Urban Greenness and Depressive Symptoms: Evaluation of Greenness Using Various Indicators. Int J Environ Res Public Health, 2019. **16**(2): p. 09.
- 183. MacKerron, G. and S. Mourato, *Happiness is greater in natural environments*. Global Environmental Change-Human and Policy Dimensions, 2013. **23**(5): p. 992-1000.
- 184. Gilchrist, K., C. Brown, and A. Montarzino, Workplace settings and wellbeing: Greenspace use and views contribute to employee wellbeing at peri-urban business sites. Landsc. Urban Plann., 2015.
   138: p. 32-40.
- Alcock, I., et al., What accounts for 'England's green and pleasant land'? A panel data analysis of mental health and land cover types in rural England. Landscape and Urban Planning, 2015. 142: p. 38-46.



- 186. Astell-Burt, T. and X. Feng, *Association of Urban Green Space with Mental Health and General Health among Adults in Australia.* JAMA Netw. Open, 2019. **2**(7).
- 187. Taylor, M.S., et al., *Research note: Urban street tree density and antidepressant prescription rates-A cross-sectional study in London, UK.* Landsc. Urban Plann., 2015. **136**: p. 174-179.
- 188. Tomao, A., et al., *Restorative urban forests: Exploring the relationships between forest stand structure, perceived restorativeness and benefits gained by visitors to coastal Pinus pinea forests.* Ecol. Indic., 2018. **90**: p. 594-605.
- 189. Browning, M.H.E.M. and A. Rigolon, *Do Income, Race and Ethnicity, and Sprawl Influence the Greenspace-Human Health Link in City-Level Analyses? Findings from 496 Cities in the United States.* Int J Environ Res Public Health, 2018. **15**(7): p. 20.
- 190. Browning, M., K. Lee, and K.L. Wolf, *Tree cover shows an inverse relationship with depressive symptoms in elderly residents living in US nursing homes.* Urban Forestry and Urban Greening, 2019. **41**(May): p. 23-32.
- 191. Johnson, B.S., et al., *Exposure to neighborhood green space and sleep: evidence from the Survey of the Health of Wisconsin.* Sleep Health, 2018. **4**(5): p. 413-419.
- 192. Beyer, K.M.M., et al., *Exposure to neighborhood green space and mental health: evidence from the survey of the health of Wisconsin.* Int J Environ Res Public Health, 2014. **11**(3): p. 3453-72.
- 193. Larson, L.R., et al., *Gray space and green space proximity associated with higher anxiety in youth with autism.* Health Place, 2018. **53**: p. 94-102.
- 194. Dzhambov, A.M., et al., *Multiple pathways link urban green- and bluespace to mental health in young adults.* Environ Res, 2018. **166**: p. 223-233.
- 195. Mavoa, S., et al., *Higher levels of greenness and biodiversity associate with greater subjective wellbeing in adults living in Melbourne, Australia.* Health Place, 2019. **57**: p. 321-329.
- 196. Adjei, P.O.W. and F.K. Agyei, *Biodiversity, environmental health and human well-being: analysis of linkages and pathways.* Environ. Dev. Sustainability, 2015. **17**(5): p. 1085-1102.
- 197. Hoyle, H., J. Hitchmough, and A. Jorgensen, *All about the 'wow factor'? The relationships between aesthetics, restorative effect and perceived biodiversity in designed urban planting.* Landsc. Urban Plann., 2017. **164**: p. 109-123.
- 198. Southon, G.E., et al., *Perceived species-richness in urban green spaces: Cues, accuracy and wellbeing impacts.* Landsc. Urban Plann., 2018. **172**: p. 1-10.
- 199. Rantakokko, M., et al., *Nature diversity and well-being in old age.* Aging Clin Exp Res, 2018. **30**(5): p. 527-532.
- 200. Speldewinde, P.C., et al., *A relationship between environmental degradation and mental health in rural Western Australia*. Health Place, 2009. **15**(3): p. 865-72.
- 201. Speldewinde, P.C., et al., *The hidden health burden of environmental degradation: disease comorbidities and dryland salinity*. Ecohealth, 2011. **8**(1): p. 82-92.
- 202. Björk, J., et al., *Recreational values of the natural environment in relation to neighbourhood satisfaction, physical activity, obesity and wellbeing.* Journal of epidemiology and community health, 2008. **62**(4).
- 203. Annerstedt, M., et al., *Green qualities in the neighbourhood and mental health results from a longitudinal cohort study in Southern Sweden*. BMC Public Health, 2012. **12**: p. 337.
- 204. van den Bosch, M.A., et al., *Moving to serene nature may prevent poor mental health— results from a swedish longitudinal cohort study.* Int. J. Environ. Res. Public Health, 2015. **12**(7): p. 7974-7989.
- 205. Windhorst, E. and A. Williams, "It's like a different world": Natural places, post-secondary students, and mental health. Health Place, 2015. **34**: p. 241-50.
- 206. Liao, M.-L., et al., *Effects of garden visits on people with dementia: A pilot study.* Dementia, 2018: p. 1471301218793319.
- 207. Pálsdóttir, A.M., et al., *The qualities of natural environments that support the rehabilitation process of individuals with stress-related mental disorder in nature-based rehabilitation*. Urban For. Urban Greening, 2018. **29**: p. 312-321.

- 208. Packer, J., Visitors' restorative experiences in museum and botanic garden environments. 2013. p. 202-222.
- 209. Rostami, R., et al., *The role of historical Persian gardens on the health status of contemporary urban residents: gardens and health status of contemporary urban residents.* Ecohealth, 2014. **11**(3): p. 308-21.
- 210. Cook, M., Using urban woodlands and forests as places for improving the mental well-being of people with dementia. Leis. Stud., 2019.
- 211. Foo, C.H., *Linking forest naturalness and human wellbeing-A study on public's experiential connection to remnant forests within a highly urbanized region in Malaysia.* Urban For. Urban Greening, 2016. **16**: p. 13-24.
- 212. O'Brien, L., J. Morris, and A. Stewart, *Engaging with peri-urban woodlands in England: the contribution to people's health and well-being and implications for future management.* Int J Environ Res Public Health, 2014. **11**(6): p. 6171-92.
- 213. Thomas, F., *The role of natural environments within women's everyday health and wellbeing in Copenhagen, Denmark.* Health Place, 2015. **35**: p. 187-95.
- 214. Alcock, I., et al., What accounts for 'England's green and pleasant land'? A panel data analysis of mental health and land cover types in rural England. 2015. **142**: p. 38-46.
- 215. White, M.P., et al., *The 'Blue Gym': What can blue space do for you and what can you do for blue space?* Journal of the Marine Biological Association of the United Kingdom, 2016. **96**(1): p. 5-12.
- 216. Dzhambov, A., et al., *Urban residential greenspace and mental health in youth: Different approaches to testing multiple pathways yield different conclusions.* Environ Res, 2018. **160**: p. 47-59.
- 217. Kim, M., T.H.T. Gim, and J.S. Sung, *Applying the Concept of Perceived Restoration to the Case of Cheonggyecheon Stream Park in Seoul, Korea.* Sustainability, 2017. **9**(8).
- 218. Zhang, Y., et al., *Physiological Responses of the Youth Viewing a Japanese Garden*. Conference Proceedings: ... Annual International Conference of the IEEE Engineering in Medicine & Biology Society, 2018. **2018**: p. 1550-1553.
- 219. McNair, D., M. Lorr, and L. Droppleman, Profile of mood states (POMS). 1989.
- 220. Korpela, K.M., et al., *{#7608} Favorite green, waterside and urban environments, restorative experiences and perceived health in Finland.* Health Promot Internation, 2010. **25**(2): p. 200-9.
- 221. MacKerron, G. and S. Mourato, *Happiness is greater in natural environments*. Global Environmental Change, 2013. **23**(5): p. 992-1000.
- 222. White, M.P., et al., *Spending at least 120 minutes a week in nature is associated with good health and wellbeing.* Scientific reports, 2019. **9**(1): p. 1-11.
- 223. Wheeler, B.W., et al., *Greenspace and children's physical activity: a GPS/GIS analysis of the PEACH project.* Preventive medicine, 2010. **51**(2): p. 148-152.
- 224. Vanaken, G.-J. and M. Danckaerts, *Impact of green space exposure on children's and adolescents' mental health: A systematic review.* International journal of environmental research and public health, 2018. **15**(12): p. 2668.
- 225. Rojas-Rueda, D., et al., *Green spaces and mortality: a systematic review and meta-analysis of cohort studies.* The Lancet Planetary Health, 2019. **3**(11): p. e469-e477.
- 226. Tsutsumi, M., et al., {#14954} Individual reactions to viewing preferred video representations of the natural environment: A comparison of mental and physical reactions. Jpn. J. Nurs. Sci., 2017. **14**(1): p. 3-12.
- 227. Roe, J.J., P.A. Aspinall, and C. Ward Thompson, *Coping with stress in deprived urban neighborhoods: what is the role of green space according to life stage?* Frontiers in psychology, 2017. **8**: p. 1760.
- 228. Marselle, M.R., et al., *Review of the mental health and well-being benefits of biodiversity*, in *Biodiversity and health in the face of climate change*. 2019, Springer, Cham. p. 175-211.
- 229. Mitchell, R., *Is physical activity in natural environments better for mental health than physical activity in other environments?* Social Science & Medicine, 2013. **91**: p. 130-134.



- 230. Rogerson, M., et al., *A comparison of four typical green exercise environments and prediction of psychological health outcomes.* Perspectives in Public Health, 2016. **136**(3): p. 171-80.
- 231. Yahia, M.W., et al., *Effect of urban design on microclimate and thermal comfort outdoors in warmhumid Dar es Salaam, Tanzania.* International Journal of Biometeorology, 2018. **62**(3): p. 373-385.
- 232. Beute, F. and Y.A. de Kort, *Salutogenic effects of the environment: Review of health protective effects of nature and daylight*. Applied Psychology: Health and Well-Being, 2014. **6**(1): p. 67-95.
- 233. Kaplan, R., *The role of nature in the context of the workplace*. Landscape and urban planning, 1993. **26**(1-4): p. 193-201.
- 234. Beute, F., Y. de Kort, and W. IJsselsteijn, *Restoration in its natural context: How ecological momentary assessment can advance restoration research.* International journal of environmental research and public health, 2016. **13**(4): p. 420.

142 of 142