

International
Long-Term Ecological Research

Network

Integrated European
Long-Term Ecosystem
Critical Zone &
Socio-ecological Research
Research Infrastructure

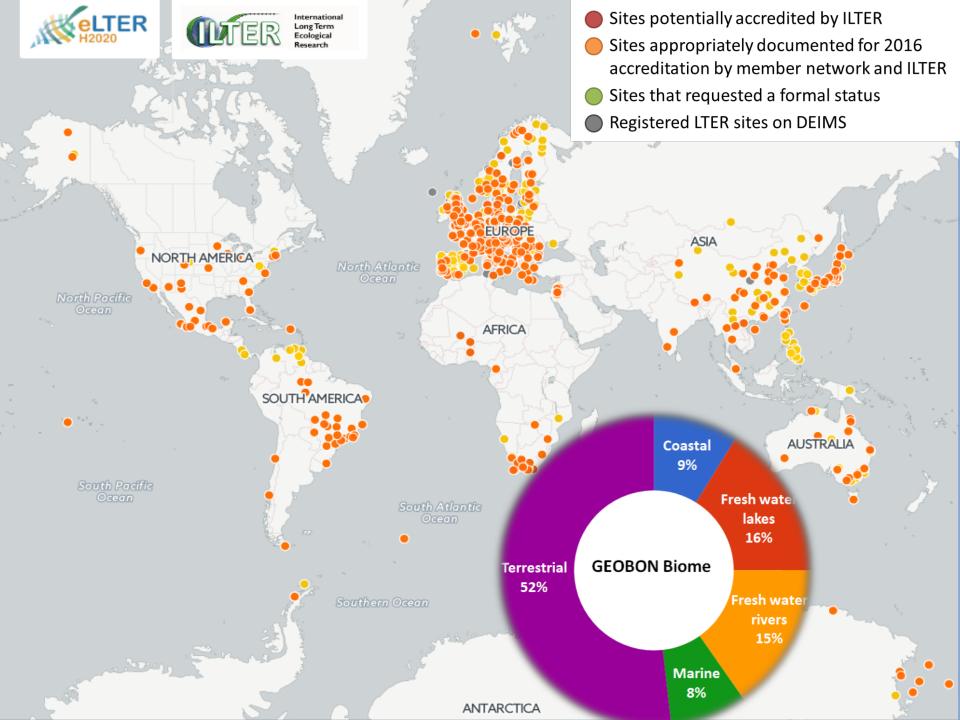
Filling a critical gap for top-class science at the continental scale

Interplay of the European LTER (eLTER) & global LTER (ILTER) in response to biodiversity & ecosystem services research requirements

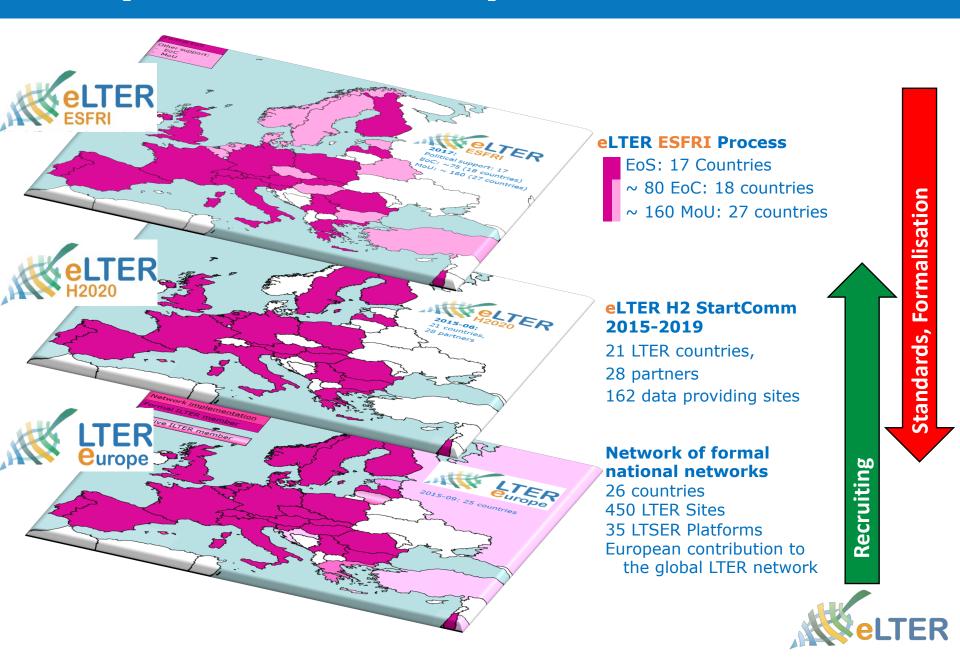
DG Research / EKLIPSE Brussels, 1 June 2018

Michael Mirtl
Chair man of ILTER, eLTER ESFRI coordinator
(UFZ/DE & EAA/AT)

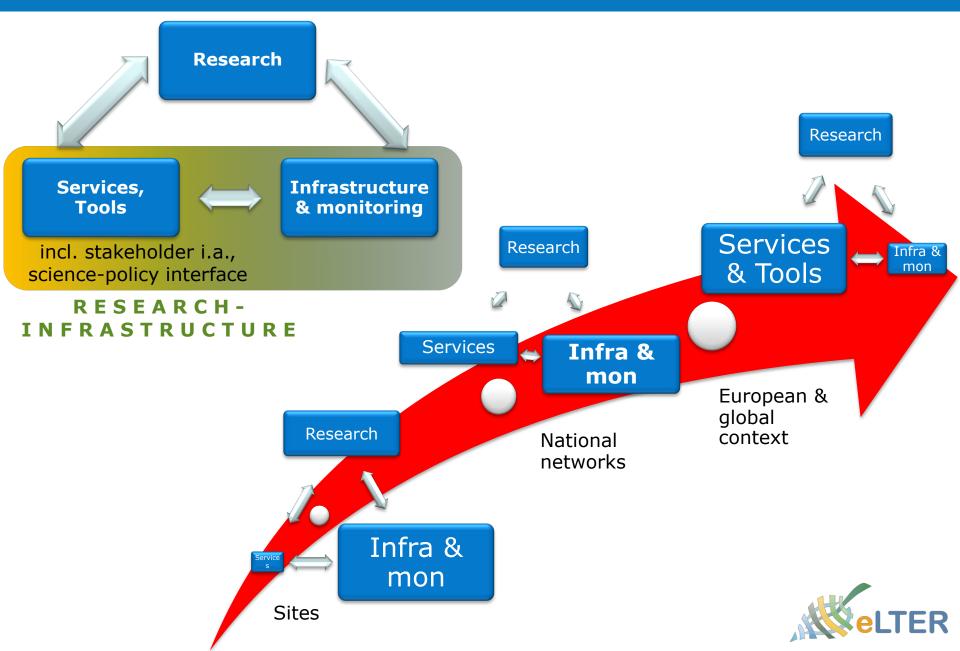
Reference to the meeting background

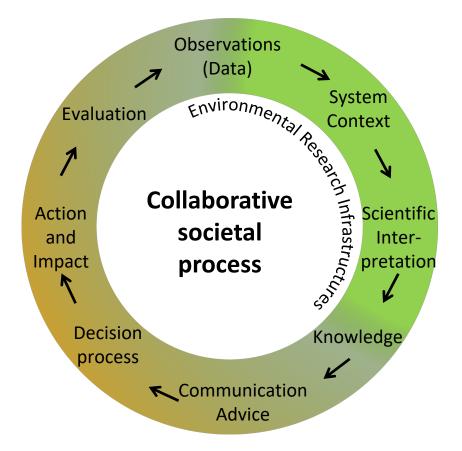

Item 3 of the background document:

...how these **global processes** and results could concretely be **translated into European priorities**, capturing EU-added value for European research and innovation policy, and conversely, how best **European research and innovation policy** and results (priorities, projects, **knowledge**, **scientific capacity & research infrastructure**) could **strategically feed into** these **global** processes.



ILTER: Integrating and coordinating key elements of environmental systems research




European LTER components

Effects of strategic planning across organizational levels

Societal and economic Impact as a collaborative societal process

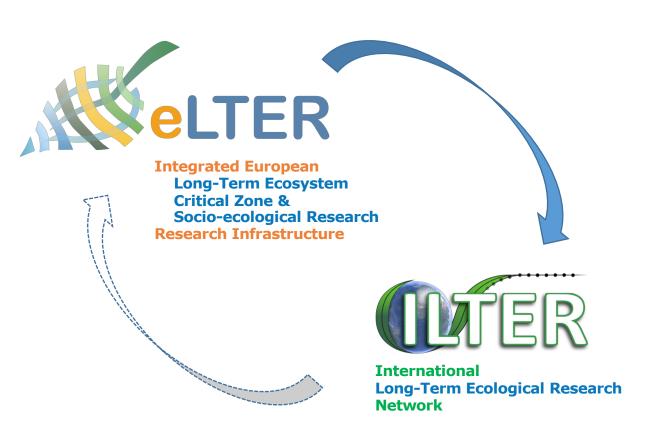
Data requirements (GC, SDG) Raw data Continuous refinement Information from other RIs High level data products Tailor-made information

EU policy implementation

Exemplary frameworks for environmental policies:

- Strategy on adaptation to
 Regulation on Invasive Climate Change
- Biodiversity Strategy
- Habitats Directive
- **Birds Directive**

- **Alien Species**
- Common agricultural policy (CAP)
- Nitrates Directive

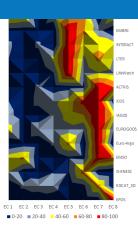

- Soils thematic strategy
- Drinking Water Directive
- Water Framework Directive
- NEC Directive

Major inputs from Europe to the global scale

Special focus on societal Grand Challenges, Biodiversity and Ecosystem Services concerning

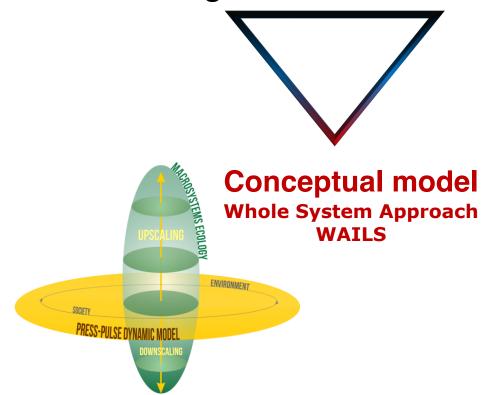
- scientific concepts
- in-situ design
- standards
- tools & services

Scientific identity: role, scope, basic concept

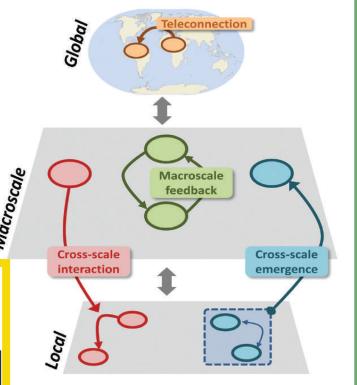

- Climate change and greenhouse gases
- Biodiversity loss and land use change
- Eutrophication and pollution
- Environmental protection & sustainable management of nat. resources
 - → "socio-ecology"

Anchoring in 3 Grand Challenge classifications

• Research: US NRC


Societal: EC

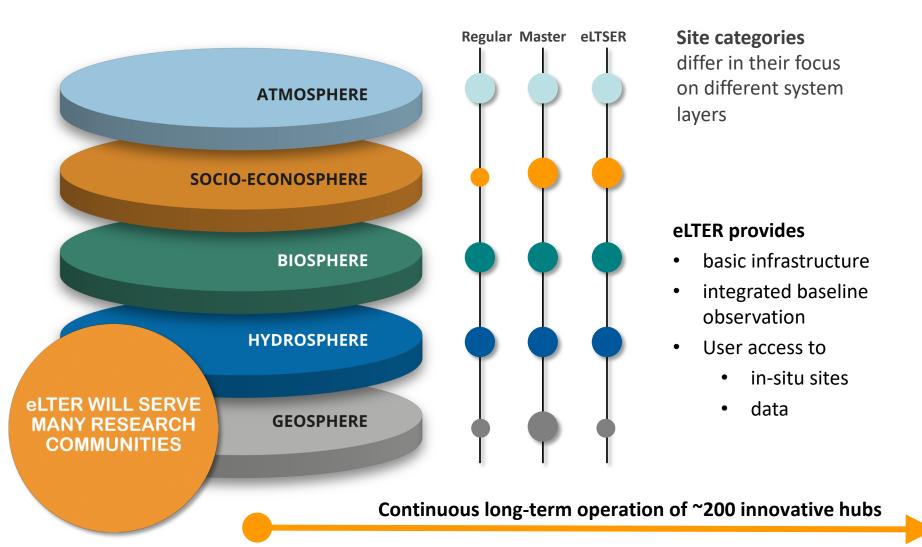
Workflow: ICSU



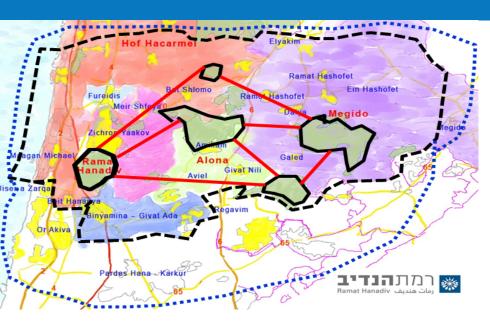
Core research challenges

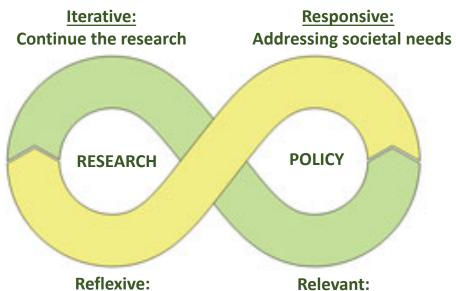
Tackled Grand Challenges

Whole-systyem approach for in-situ research: Elements Heffernan et al. 2014 Macroscale Collins et al. 2011 External drivers Economic trends, security and foreign relations, demographics, political climate, economic trends Biogeophysical template Social template Pulses: dust events. Ecosystem structure Human floods, drought, nutrient behavior input Small-scale patchiness Demographic changes, legal and illegal settlement, (shrubs, crusts), large-scale patchiness. anti-desertification Presses: increased H1 ecological gradient measures, tourism, forestry, recreational use, (ecotone) agriculture, grazing landscape conversion (settlement), Critical agriculture, forestry, and H5 arazina **Zone** Ecosystem **Human outcomes** Ecosystem services function Land-use policy (national Hydrological cycles and regional), settlement type and Regulating: C sequestration, (wadis, groundwater), distribution, enforcement disease regulation, pest suppression mechanisms, demographic nutrient cycles, soil fluxes, Provisioning: food and fiber distribution, biomass productivity quality of life Cultural: biodiversity, rare species, open space, recreation, aesthetics Supporting: primary production, nutrient cycling H4 Tansley 1935 Vernadsky 1926



Heffernan et al. 2014

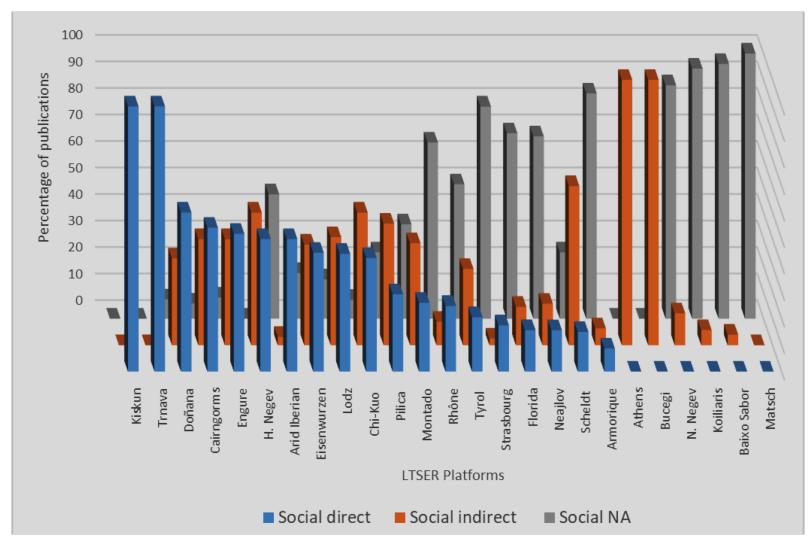



Design based on "Whole System"-Approach & cross-disciplinarity

LTSER Platforms

 Regional scope, including multiple land use types

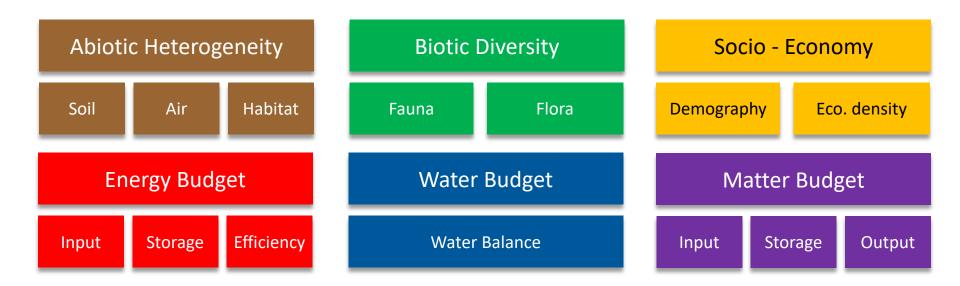
Designed for direct policy uptake


Did it work?

- Interdisciplinary: Promote integration of natural and social science
- Cross-sector stakeholder collaboration
- Relevant knowledge for decision-making

What is LTSER producing?

(Do LTSER papers report on social data)

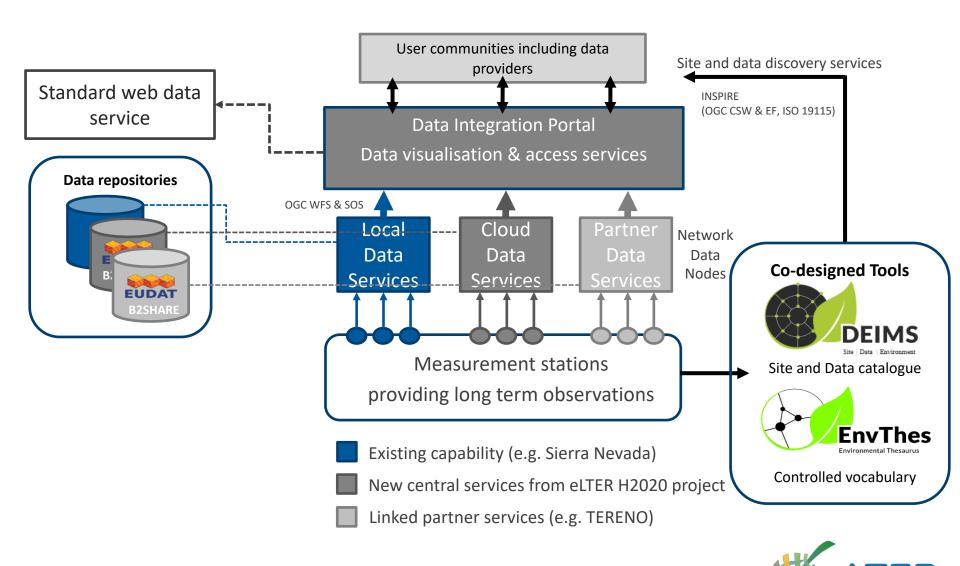

Towards an integrated conceptual framework for the LTER standard ecosystem observations: Ecosystem Integrity & Essential Biodiversity Variables

Ecosystem Integrity

Components I	Components II	Basic Ecological Integrity Indicators III								
		Flora diversity								
	Biotic diversity	Fauna diversity								
		Within habitat structure								
Ecosystem		Soil								
structure	Alteria	Water								
	Abiotic	Air								
	heterogeneity	Habitat								
		Additional variables when indicated								
		Input								
	Energy budget	Storage								
		Output								
		Other state variables when indicated								
		Efficiency measures								
		Input								
		Storage								
Ecosystem processes	Matter budget	Output								
processes		Other state variables when indicated Efficiency measures								
		Input								
		Storage								
	Water budget	Output								
		Other state variables when indicated								
		Efficiency measures								

Haase, Tonkin, Stoll, Burkhard, Frenzel, Geijzendorffer, Häuser, Klotz, Kühn, Mirtl, Müller, Musche, Penner, Schmeller (in review): The next generation of site-based long-term ecological monitoring

eLTER Standard Observation Variables


Simplicity (Parsimony)

"A design too complex increases the risk of premature demise." (Henry Janzen, 2014)

- 1. Representation of key elements of the Ecosystem Integrity Concept & EBVs
- 2. High sensitivity to environmental changes
- 3. Critical Relevance for environmental modelling

Technical tools: eLTER Information Management architecture

DEIMS-SDR - Dynamic Environmental Information Management System

Documentation

Basic Informa

LTER

Site Name:

Site Code:

Web Addre

Country (S

LTER Mem

Parent Site

Contact: Si

Keywords (

General Sit

Quick Search

Discovery

Home

LTER Zöbelboden - Austria

Network

About

Login

Latest Upda

Viesturs 2017-05

2017-05 Climate

Åshild Ø 2017-05

LTER Zöl Through 2017-05-

ground veg
Tea Decom

General Characteristics, Purpose, History Metadata pr Geographic Site Status: Year Establi Size: 90.00 Purpose of S LTER Zöbelb Material inpu the ecosyste are determin are studied. biodiversity ... Show mor Coordinates: History of Si Latitude: 47.842246069311 For a compre Longitude: 14.444136161386

Leaflet | OSM Mapi

Europe's current role in the global LTER context

ILTER as platform for high-level global partnerships (e.g. UNESCO WNBR, GSO,
ICSU/PECS, FutureEarth/BELMONT, IPBES)

Prominent example GEO:

- ILTER as in-situ data provider for GEO
- DEIMS SDR as agreed pilot for a global site registry

Europe leading ILTER in close collaboration with pace setting LTER networks in China (CERN), South Africa (SAEON), Australia (TERN), US-LTER etc.

Scientific Identity

Strategic framework & partner

Scientific Identity

Network of scientists & institutions

Physical infrastructure & services:
GRI

ILTER ties to GEO (Group on Earth Observation)

- GEO
 - 100 national governments
 - 100 Participating Organizations
- ILTER = Participating Organisation
 - Observations contributing to several SDGs (e.g. 6/water; 15/biodiversity)

ILTER as in-situ data provider

DEIMS SDR as agreed pilot for a **global site registry** across networks (incl. accreditation)

ILTER fosters **bottom- up integration**/consolidation of terrestrial insitu observation
networks

User of RS products to better fulfil its own mission (scale?)

Calibration, verification and validation facility for RS service providers

Contribution to the development of a Global Terrestrial Observation System successor

Outlook

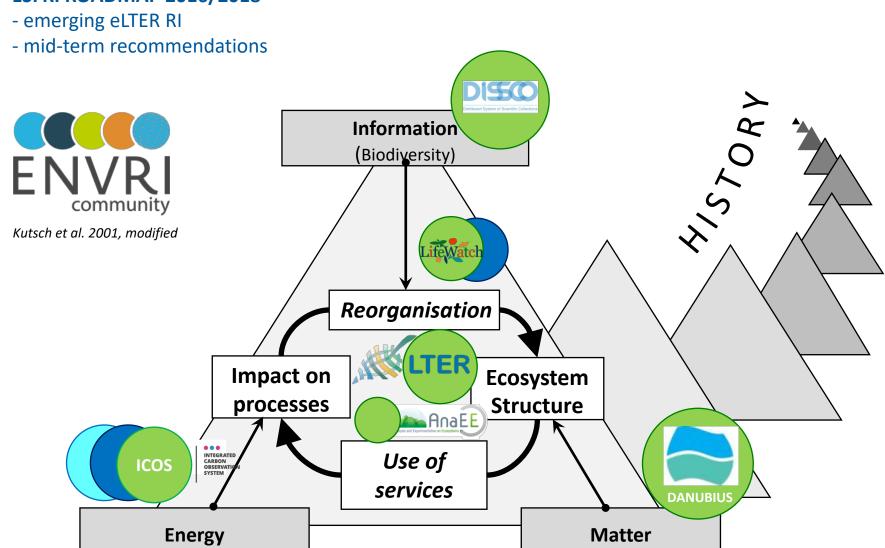
Europe:

- ESFRI Roadmap 2018 (official communication June 2018)
- Prepratory Phase Project
- eLTER H2020 Advanced Communities project (forthcoming INFRAIA call)
- New overall governance structure

Globally:

- Zhaoqing Think Tank on integrated ecosystem research infrastructures
- G8 Group of Senior Officers (GSO): LTER as case study Global Research Infrastructure
- LTER element of network nucles for re-establishing GTOS
- 2nd ILTER Open Science Meeting (OSM): 2-8 September 2019, Leipzig

If you want to go fast go alone, if you want to go far go together.


An old African proverb

European LTER: www.lter-europe.net ILTER: www.ilternet.edu/

Q 2.1: Please elaborate how eLTER will fit in the landscape of RIs

- Two "outside views"

ESFRI ROADMAP 2016/2018

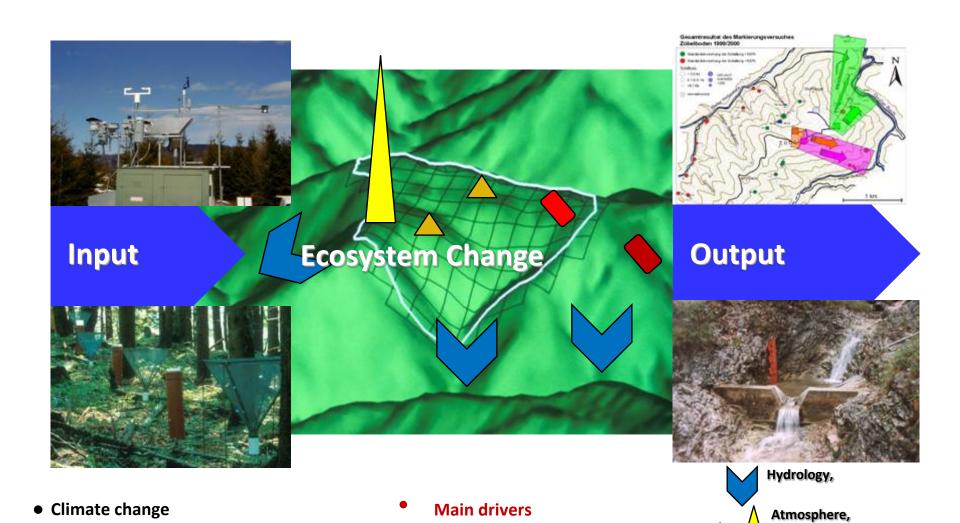
Option: s.th. on coverage...

s.th. on coverage...

• to stress socio-ecological regions

basic natur of what we are doing:

- the "layers" model
- OR: the RIs political process interactions slide from the hearing



Example for LTER site setup, activities and co-location

Biodiversity and land use

Eutrophication and pollutants

Sustainable socio-ecological systems (resource use)

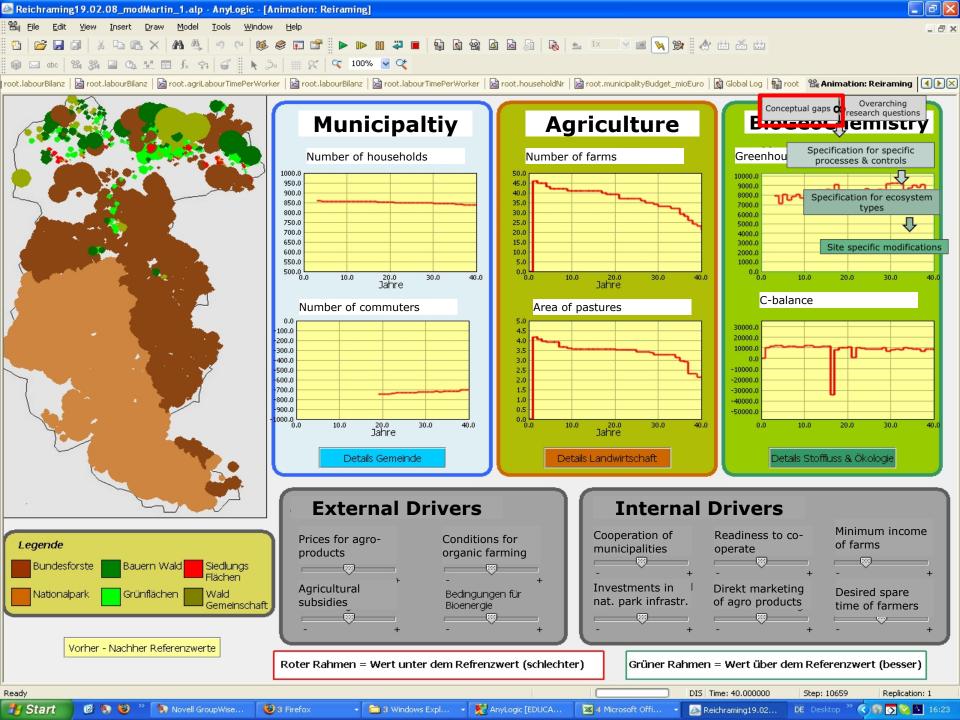
Ecosystem structure & functions

Disturbances (presses, pulses)

e.g. ICOS, FluxNet

Experiments

Simron Jit Singh · Helmut Haberl Marian Chertow · Michael Mirtl Martin Schmid Editors

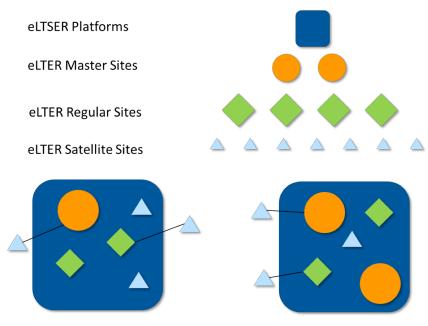

Long Term Socio-Ecological Research

Studies in Society-Nature Interactions Across Spatial and Temporal Scales

- Concepts, Methods and Linkages
 - LTSER, SES, ISSE/PPD, SEM
 - environmental history
 - critical scales
- Applications Across Ecosystems, Time and Space
 - remote, urban, islands
 - agricultural systems
- 3. Formations and the Transdisciplinary Challenge
 - Europe, US, France, Finland, Austria

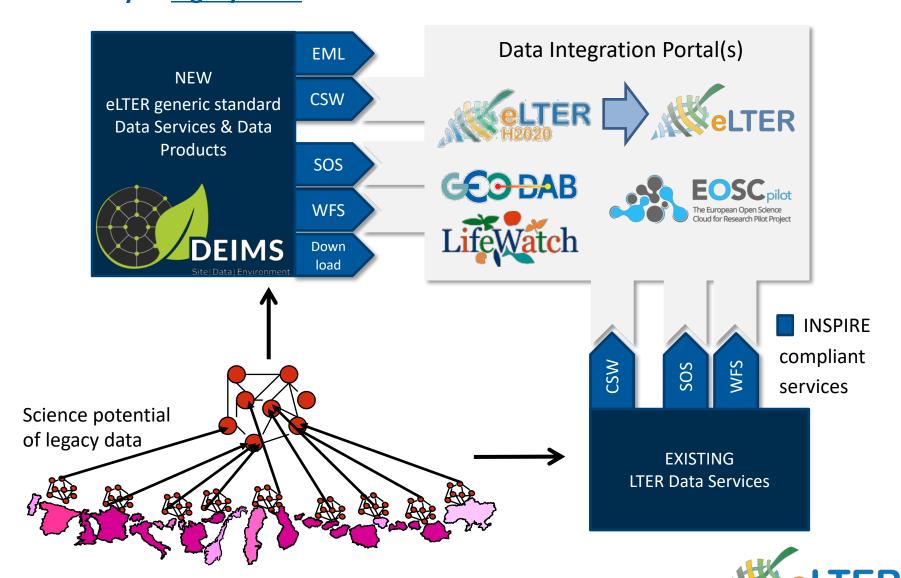
A "fleet" for long-term ecosystem, critical zone and socio-ecological research

Filling a critical gap


Fostering cross-disciplinary research in LTSER Platforms

Aligning investments

Collaboration with related RIs


European leadership and contributions to Global Research Infrastructures

Q1.4: <u>Harmonisation</u> activities & the <u>scale of ambition for</u> harmonisation and accessibility of <u>legacy data</u> from the various sites

Q4: Define and quantify <u>societal and economic impact</u> and your plans to monitor it especially with respect to the GCs mentioned

Transactional (directly monetary)

Quantifiable indirectly indirectly

Huge external long-term impact for society

- SBAs: Genetic diversity, water quality, natural resources, environmentally related health issues and risks
- Grand Challenges: Biogeochemical, Biodiversity and Ecosystem, Climate change, Land-use Dynamics

Policy support

Quantifiable indirectly monetary

Qualitative indirectly monetary

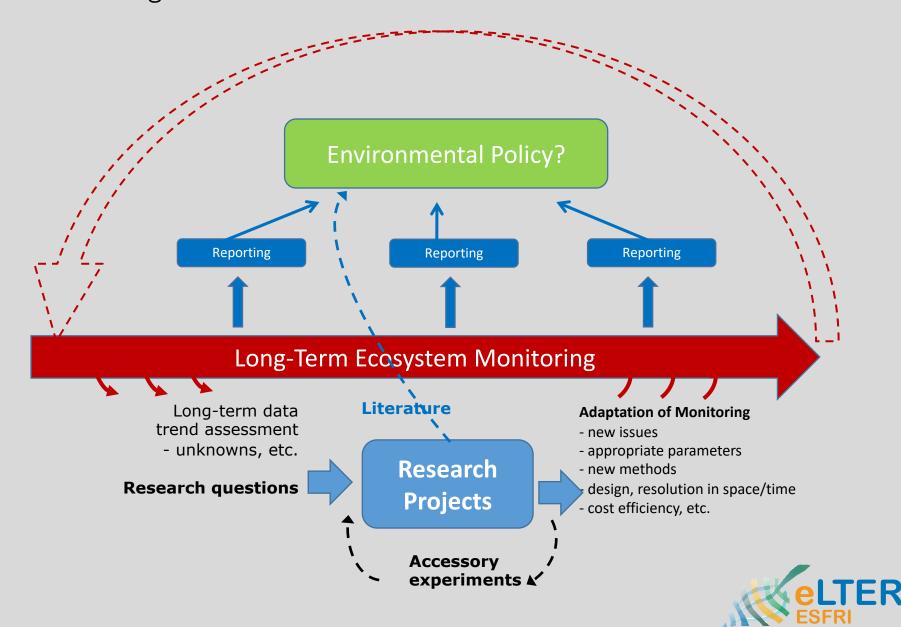
Economic Value of Ecosystem Services in Europe

(Constanza et al. 2014)

12,5 Trillion €/a

If eLTER RI
helps saving **only 0.01%**of total European ES

1,25 Billion €/a


Operational costs of eLTER RI

30 Million €/a

Cost/Benefits Ratio

1:42

Iterative scientific workflow and the continuous improvement of monitoring

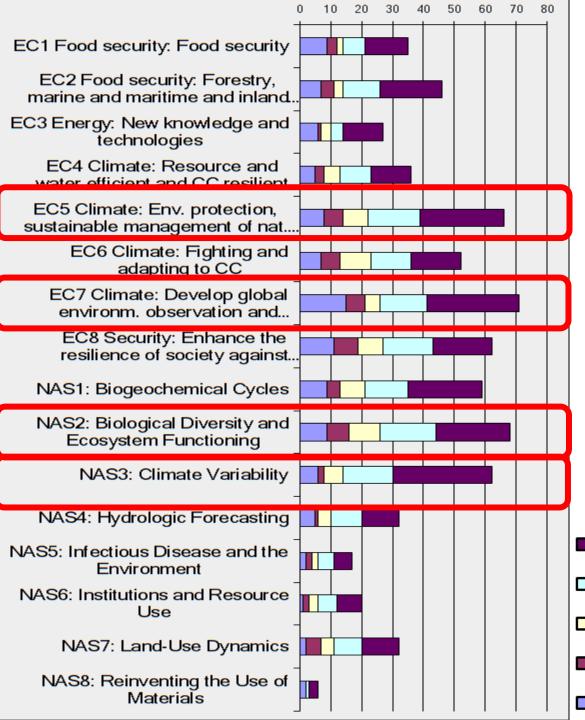
Issues of relevance & next steps for the ALTER-Net infrastructures activity

Decisions

- ALTER-Net position paper on RI requirements for biodiversity research: Adoption
 of final draft
- Reconfirm Letter of Support for the LTER ESFRI initiative: Via support letter for the Science Case MoU
- Continue co-development of DEIMS: No additional funds requested, but move existing item to next phase (12 kEUR)

Milestones

- Combined LTER 2017 annual meeting (possibly with stakeholders slot) (Vienna): 7 9 June 2017
- Almost final draft: End June 2017


Candidate Grand Challenges classifications

- European Commission's Societal Challenges for Europe 2020
 - http://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges
- US Nat. Research Council Grand Challenges in Environmental Sciences
 - http://www.nap.edu/catalog/9975/grand-challenges-in-environmental-sciences
- ICSU Earth System Science for Global Sustainability: The Grand Challenges (Observing – forecasting – confining – responding – innovating)
 - http://www.icsu.org/news-centre/press-releases/2010/scientific-grand-challenges-identified-to-address-global-sustainability
- ESFRI Grand Research Challenges used for the 2014 ESFRI environmental RI interoperability and landscape analysis
 - Asmi et al. 2014

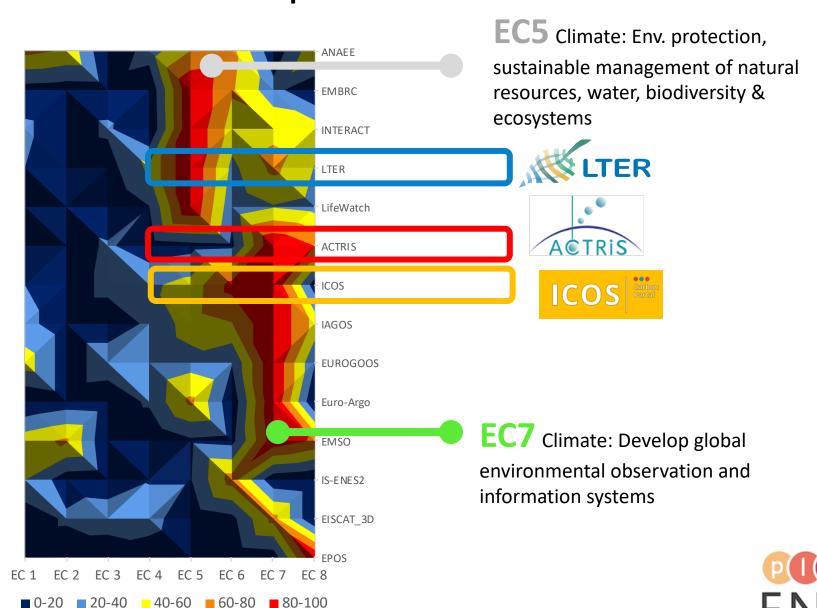
ENVRIplus GC-matrix

	ENVRIplu	is Matrix for defining	SOCIETAL AND POLITICAL ASPECTS									RESEARCH AND DEVELOPMENT MOTIVATED ASPECTS							
	Research Infrastructure response to				Europe	an Commis	ssion's Gra	and Chal	lenges		US I	NRC/NAS	S - Gra	nd Cha	llenges	in Envir	onm: So	iences	
	selected Grand Challenge classifications			Food security	Energy	Climate & res.effic.	Climate & res.effic.		Climate & res.effic.	Security	1	2	3	4	5	6	7	8	
				maritime	knowled ge and technol ogies	resource – and water - efficient and CC resilient econ. & societ.	protection, sustainably manag.	and adapting	observatio n and	Enhance the resilience of society against natural and man- made disasters	eoc hem ical	Biologic al Diversit y and Ecosyst em Functio ning	te Varia bility	gic	us	Instituti ons and Resour ce Use	Land- Use Dynami cs	Reinve nting the Use of Material s	
WORKFLOW & ECONOMIC ASPECT U Scientific Grand Challenges identified to address global sustainability	nges identified to ainability	Observing—Develop, enhance and integrate the observation systems needed to manage global and regional environmental change. Forecasting—Improve the usefulness of forecasts of future environmental conditions and their consequences for people.					blodiv. &			uisasteis									
	= =	Confining—Determine how to anticipate, recognize, avoid and manage disruptive global environmental change.				FOR EA	CH CR	OSS-	SECTIO	N THE	SC	OPE	OF						
KFLOW &	ORKFLOW & Ei Scientific Grand address glob	institutional, economic and behavioural changes can enable effective steps toward global sustainability.								E CH	ECK	(ED							
WOR	ICSU	Innovating—Encourage innovation (coupled with sound mechanisms for evaluation) in developing technological, policy and social responses to achieve global sustainability.																	

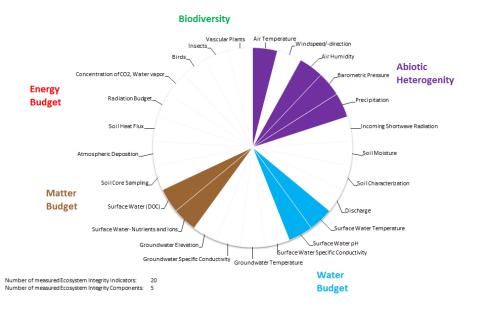
Overall response to
EC and US NRC
Grand Challenges &
share of ICSU
workflow elements
(based on yes/no)

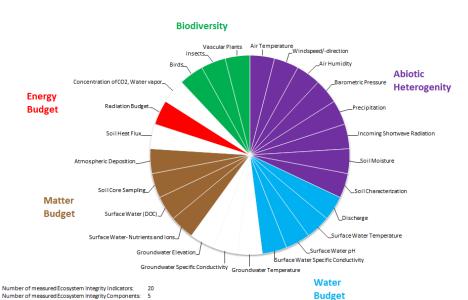
- Observing
- □Forecasting
- Confining
- Responding
- Innovating

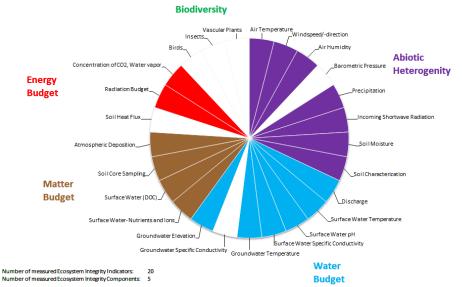
Example for usage in anchoring individual RIs in GC matrix: LTER


RI	EC1	EC2	EC3 Energy:	EC4 Climate:	EC5 Climate:	EC6	EC7 Climate:	EC8 Security:	NRC1:	NRC2:	NRC	NRC4:	NRC5:	NRC6:	NRC7:	Mean over all
	Food	Food	New	Resource	Env.	Climate:	Develop	Enhance the	Biogeo	Biological	3:	Hydrol	Infectiou	Institution	Land-	
	securi	security	- knowledge	and water	protection,	Fighting	global	resilience of	chemic	Diversity and	Clim	ogic	S	s and	Use	
	ty	non-	and	efficient and	sustainable	and	environm.	society	al	Ecosystem	ate	Foreca	Disease	Resource	Dynamic	
	agro	agro	technologies	CC resilient	management	adapting	observation	against	Cycles	Functioning	Varia	sting	and the	Use MV	s MV	
	MV	habitats	MV	economy	of nat.	to CC	and	natural and	MV	MV	bility	MV	Environ			
		& water		and society	resources,	MV	information	man-made			MV		ment MV			
		MV		MV	water, biodiv		systems MV	disasters								
					& ecosystems			MV								
					MV											
LTER	20	44	11	44	100	35	65	39	59	87	70	23	3	14	57	44
LTER above		1		1	1		1	1	1	1	1			1	1	1
mean																
ACTRIS	3	10	23	8	13	15	100	79	3	3	87	23	5	0	5	24
ICOS	20	18	25	36	47	87	100	9	76	55	45	16	7	2	13	35
ANAEE	66	58	0	30	60	66	6	56	100	90	24	18	0	58	54	43
EISCAT_3D	5	24	33	29	5	14	67	0	57	24	57	100	19	14	19	31
EMBRC	11	11	10	3	100	63	28	0	100	100	15	0	40	0	0	30
EMSO	52	63	0	0	17	13	93	77	50	30	100	0	0	17	0	32
EPOS	5	3	1	9	0	4	8	100	0	0	0	0	0	5	0	8
Euro-Argo	0	9	6	24	65	6	100	0	35	24	94	18	0	0	0	24
EUROGOOS	50	58	32	21	32	21	100	21	53	26	84	32	3	0	0	33
IAGOS	26	27	9	23	50	59	100	54	30	30	71	30	25	25	25	41
INTERACT	23	18	23	0	100	51	56	51	92	92	38	31	0	49	28	41
IS-ENES2	41	50	6	19	19	69	6	0	69	19	100	38	6	0	0	28
LifeWatch	10	23	0	19	100	26	39	32	0	90	3	0	32	10	6	24
Other (please		57	43	35	63	45	100	46	31	55	51	37	62	15	40	50
Mean	24	31	15	18	48	39	65	38	50	46	55	24	14	14	14	32

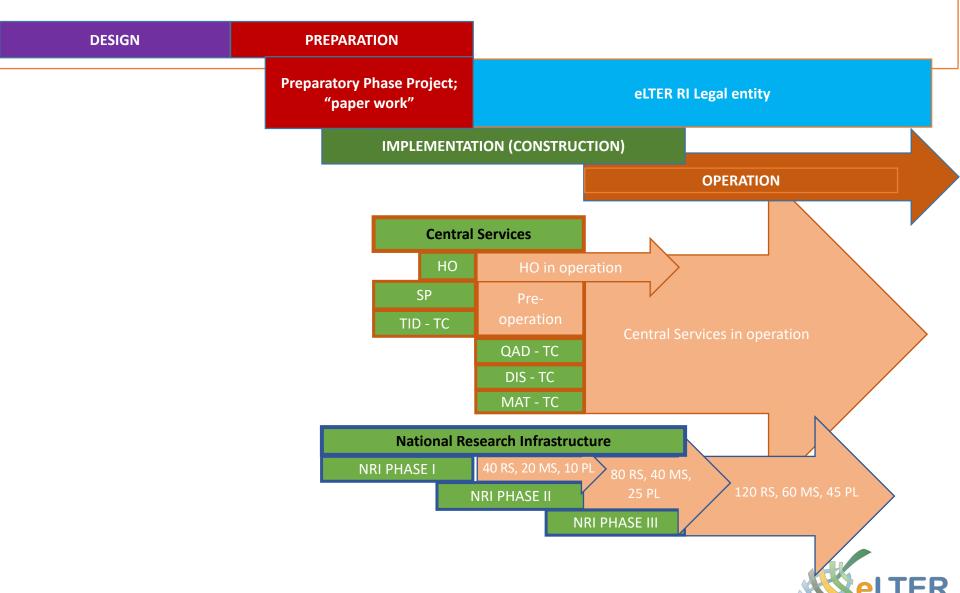
GCs, where LTER ranks specifically high


- EC5 Climate: Environmental protection, sustainable management of nat. resources, water, biodiversity & ecosystems
- EC7 Climate: Develop global environmental observation and information systems
- NRC1 Biogeochemical Cycles
- NRC2 Biological Diversity and Ecosystem Functioning
- NRC3 Climate Variability
- NRC7 Land-Use Dynamics.




Example: Visibility of special niche of eLTER, ACTRIS & ICOS in response to EC Societal GCs

Compliance check of indiv. sites



Time plan overview

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

end

